Browse > Article
http://dx.doi.org/10.5187/jast.2021.e94

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota  

Oh, Ju Kyoung (Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institute)
Vasquez, Robie (Department of Animal Resources Science, Dankook University)
Kim, Sang Hoon (Department of Animal Resources Science, Dankook University)
Hwang, In-Chan (Department of Animal Resources Science, Dankook University)
Song, Ji Hoon (Department of Animal Resources Science, Dankook University)
Park, Jae Hong (Department of Animal Resources Science, Dankook University)
Kim, In Ho (Department of Animal Resources Science, Dankook University)
Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
Publication Information
Journal of Animal Science and Technology / v.63, no.5, 2021 , pp. 1142-1158 More about this Journal
Abstract
Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.
Keywords
Short-chain fatty acid; Lactate; Multispecies probiotic; Gut microbiota; Probiotic; Weaned pig;
Citations & Related Records
연도 인용수 순위
  • Reference
1 De Baere S, Eeckhaut V, Steppe M, De Maesschalck C, De Backer P, Van Immerseel F, et al. Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal. 2013;80:107-15. https://doi.org/10.1016/j.jpba.2013.02.032   DOI
2 Slizewska K, Markowiak-Kopec P, Zbikowski A, Szeleszczuk P. The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci Rep. 2020;10:4281. https://doi.org/10.1038/s41598-020-61256-z   DOI
3 Wang Y, Dilidaxi D, Wu Y, Sailike J, Sun X, Nabi X. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother. 2020;125:109914. https://doi.org/10.1016/j.biopha.2020.109914   DOI
4 Joseph N, Vasodavan K, Saipudin NA, Yusof BNM, Kumar S, Nordin SA. Gut microbiota and short-chain fatty acids (SCFAs) profiles of normal and overweight school children in Selangor after probiotics administration. J Funct Foods. 2019;57:103-11. https://doi.org/10.1016/j.jff.2019.03.042   DOI
5 Lu X, Zhang M, Zhao L, Ge K, Wang Z, Jun L, et al. Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. J Microbiol Biotechnol. 2018;28:1791-9. https://doi.org/10.4014/jmb.1807.07026   DOI
6 Balasubramanian B, Lee SI, Kim IH. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing-finishing pigs. Ital J Anim Sci. 2018;17:100-6. https://doi.org/10.1080/1828051X.2017.1340097   DOI
7 Wang K, Chen G, Cao G, Xu Y, Wang Y, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets. J Anim Sci. 2019;97:4140-51. https://doi.org/10.1093/jas/skz235   DOI
8 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613-7. https://doi.org/10.1099/ijsem.0.001755   DOI
9 Wang C, Li W, Wang H, Ma Y, Zhao X, Zhang X, et al. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiol. 2019;19:246. https://doi.org/10.1186/s12866-019-1610-8   DOI
10 Deda O, Chatziioannou AC, Fasoula S, Palachanis D, Raikos N, Theodoridis GA, et al. Sample preparation optimization in fecal metabolic profiling. J Chromatogr B. 2017;1047:115-23. https://doi.org/10.1016/j.jchromb.2016.06.047   DOI
11 Sun Y, O'Riordan MXD. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv Appl Microbiol. 2013;85:93-118. https://doi.org/10.1016/B978-0-12-407672-3.00003-4   DOI
12 Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206. https://doi.org/10.3389/fcimb.2019.00206   DOI
13 Kang X, Zhan L, Lu X, Song J, Zhong Y, Wang Y, et al. Characteristics of gastric microbiota in GK rats with spontaneous diabetes: a comparative study. Diabetes Metab Syndr Obes. 2020;13:1435-47. https://doi.org/10.2147/DMSO.S242698   DOI
14 Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157-70. https://doi.org/10.2217/fmb2016-0130   DOI
15 Hua X, Zhu J, Yang T, Guo M, Li Q, Chen J, et al. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders. Front Psychiatry. 2020;11:855. https://doi.org/10.3389/fpsyt.2020.00855   DOI
16 Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr. 2006;96:570-7. https://doi.org/10.1079/BJN20061853   DOI
17 Zhuang M, Shang W, Ma Q, Strappe P, Zhou Z. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion. Mol Nutr Food Res. 2019;63:1801187. https://doi.org/10.1002/mnfr.201801187   DOI
18 Pi Y, Hu J, Bai Y, Wang Z, Wu Y, Ye H, et al. Effects of dietary fibers with different physicochemical properties on fermentation kinetics and microbial composition by fecal inoculum from lactating sows in vitro. J Sci Food Agric. 2021;101:907-17. https://doi.org/10.1002/jsfa.10698   DOI
19 Feng G, Mikkelsen D, Hoedt EC, Williams BA, Flanagan BM, Morrison M, et al. In vitro fermentation outcomes of arabinoxylan and galactoxyloglucan depend on fecal inoculum more than substrate chemistry. Food Funct. 2020;11:7892-904. https://doi.org/10.1039/D0FO01103G   DOI
20 Moser AM, Spindelboeck W, Halwachs B, Strohmaier H, Kump P, Gorkiewicz G, et al. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome. Eur J Nutr. 2019;58:2767-78. https://doi.org/10.1007/s00394-018-1826-7   DOI
21 Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185. https://doi.org/10.3389/fmicb.2016.00185   DOI
22 Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360-74. https://doi.org/10.1016/j.cell.2015.11.004   DOI
23 Gomez-Garcia M, Sol C, de Nova PJG, Puyalto M, Mesas L, Puente H, et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manag. 2019;5:32. https://doi.org/10.1186/s40813-019-0139-4   DOI
24 Schautteet K, Vanrompay D. Chlamydiaceae infections in pig. Vet Res. 2011;42:29. https://doi.org/10.1186/1297-9716-42-29   DOI
25 Kraatz M, Wallace RJ, Svensson L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int J Syst Evol Microbiol. 2011;61:795-803. https://doi.org/10.1099/ijs.0.022954-0   DOI
26 Li W, Zhang K, Yang H. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: possible role of short-chain fatty acids and gut microbiota regulated by pectin. J Agric Food Chem. 2018;66:8015-25. https://doi.org/10.1021/acs.jafc.8b02979   DOI
27 Mair C, Plitzner C, Domig KJ, Schedle K, Windisch W. Impact of inulin and a multispecies probiotic formulation on performance, microbial ecology and concomitant fermentation patterns in newly weaned piglets. J Anim Physiol Anim Nutr. 2010;94:e164-77. https://doi.org/10.1111/j.1439-0396.2010.01000.x   DOI
28 Nagata S, Chiba Y, Wang C, Yamashiro Y. The effects of the Lactobacillus casei strain on obesity in children: a pilot study. Benefic Microbes. 2017;8:535-43. https://doi.org/10.3920/BM2016.0170   DOI
29 Chen L, Zhang L, Wang W, Qiu W, Liu L, Ning A, et al. Polysaccharides isolated from Cordyceps sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet. PLOS ONE. 2020;15:e0232972. https://doi.org/10.1371/journal.pone.0232972   DOI
30 Buckel W, Barker HA. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974;117:1248-60. https://doi.org/10.1128/jb.117.3.1248-1260.1974   DOI
31 Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627-40. https://doi.org/10.3390/d5030627   DOI
32 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-504. https://doi.org/10.1101/gr.1239303   DOI
33 Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814-21. https://doi.org/10.1038/nbt.2676   DOI
34 Huang C, Qiao S, Li D, Piao X, Ren J. Effects of Lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian-Australas J Anim Sci. 2004;17:401-9. https://doi.org/10.5713/ajas.2004.401   DOI
35 Jaworski NW, Owusu-Asiedu A, Walsh MC, McCann JC, Loor JJ, Stein HH. Effects of a 3 strain Bacillus-based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs. J Anim Sci. 2017;95:308-19. https://doi.org/10.2527/jas.2016.0557   DOI
36 Markowiak-Kopec P, Slizewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12:1107. https://doi.org/10.3390/nu12041107   DOI
37 Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med. 2020;1:100077. https://doi.org/10.1016/j.xcrm.2020.100077   DOI
38 Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577-91. https://doi.org/10.1038/nrendo.2015.128   DOI
39 Jha R, Leterme P. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal. 2012;6:603-11. https://doi.org/10.1017/S1751731111001844   DOI
40 R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
41 Tsugawa H, Kabe Y, Kanai A, Sugiura Y, Hida S, Taniguchi S, et al. Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection. PLOS Biol. 2020;18:e3000813. https://doi.org/10.1371/journal.pbio.3000813   DOI
42 Basen M, Kurrer SE. A close look at pentose metabolism of gut bacteria. FEBS J. 2021;288:1804-8. https://doi.org/10.1111/febs.15575   DOI
43 Tanca A, Abbondio M, Palomba A, Fraumene C, Manghina V, Cucca F, et al. Potential and active functions in the gut microbiota of a healthy human cohort. Microbiome. 2017;5:79. https://doi.org/10.1186/s40168-017-0293-3   DOI
44 Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci. 2011;16:1768-86. https://doi.org/10.2741/3820   DOI
45 Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123-4. https://doi.org/10.1093/bioinformatics/btu494   DOI
46 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303   DOI
47 Oh JK, Amoranto MBC, Oh NS, Kim S, Lee JY, Oh YN, et al. Synergistic effect of Lactobacillus gasseri and Cudrania tricuspidata on the modulation of body weight and gut microbiota structure in diet-induced obese mice. Appl Microbiol Biotechnol. 2020;104:6273-85. https://doi.org/10.1007/s00253-020-10634-8   DOI
48 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb2011-12-6-r60   DOI
49 Lahteinen T, Rinttila T, Koort JMK, Kant R, Levonen K, Jakava-Viljanen M, et al. Effect of a multispecies Lactobacillus formulation as a feeding supplement on the performance and immune function of piglets. Livest Sci. 2015;180:164-71. https://doi.org/10.1016/j.livsci.2015.07.016   DOI
50 Shimizu H, Masujima Y, Ushiroda C, Mizushima R, Taira S, Ohue-Kitano R, et al. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci Rep. 2019;9:16574. https://doi.org/10.1038/S41598-019-53242-x   DOI
51 Zhong H, Abdullah, Deng L, Zhao M, Tang J, Liu T, et al. Probiotic-fermented blueberry juice prevents obesity and hyperglycemia in high fat diet-fed mice in association with modulating the gut microbiota. Food Funct. 2020;11:9192-207. https://doi.org/10.1039/D0FO00334D   DOI
52 Walsh CJ, Healy S, O'Toole PW, Murphy EF, Cotter PD. The probiotic L. casei LC-XCAL™ improves metabolic health in a diet-induced obesity mouse model without altering the microbiome. Gut Microbes. 2020;12:1747330. https://doi.org/10.1080/19490976.2020.1747330   DOI
53 Cao GT, Zhan XA, Zhang LL, Zeng XF, Chen AG, Yang CM. Modulation of broilers' caecal microflora and metabolites in response to a potential probiotic Bacillus amyloliquefaciens. J Anim Physiol Anim Nutr. 2018;102:e909-17. https://doi.org/10.1111/jpn.12856   DOI
54 Creus E, Perez JF, Peralta B, Baucells F, Mateu E. Effect of acidified feed on the prevalence of Salmonella in market-age pigs. Zoonoses Public Health. 2007;54:314-9. https://doi.org/10.1111/j.1863-2378.2007.01069.x   DOI
55 Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017;26:672-85.https://doi.org/10.1016/j.cmet.2017.08.019   DOI
56 Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr. 2004;91:915-23. https://doi.org/10.1079/BJN20041150   DOI
57 Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol. 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890   DOI
58 Krznaric Z, Vranesic Bender D, Mestrovic T. The Mediterranean diet and its association with selected gut bacteria. Curr Opin Clin Nutr Metab Care. 2019;22:401-6. https://doi.org/10.1097/MCO.0000000000000587   DOI
59 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513-24. https://doi.org/10.1053/j.gastro.2014.01.020   DOI
60 Ley RE. Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016;13:69-70. https://doi.org/10.1038/nrgastro.2016.4   DOI
61 Neveling DP, van Emmenes L, Ahire JJ, Pieterse E, Smith C, Dicks LMT. Effect of a multi-species probiotic on the colonisation of Salmonella in broilers. Probiotics Antimicrob Proteins. 2020;12:896-905. https://doi.org/10.1007/s12602-019-09593-y   DOI
62 Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29-41. https://doi.org/10.1111/1462-2920.13589   DOI
63 Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189-200. https://doi.org/10.1080/19490976.2015.1134082   DOI
64 Granado-Serrano AB, Martin-Gari M, Sanchez V, Riart Solans M, Berdun R, Ludwig IA, et al. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep. 2019;9:1772.https://doi.org/10.1038/s41598-019-38874-3   DOI
65 Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62:67-72. https://doi.org/10.1079/PNS2002207   DOI
66 Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of shortchain fatty acids in health and disease. In: Alt FW, editor. Advances in immunology. Amsterdam: Academic Press; 2014. p. 91-119.
67 Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006;72:3593-9. https://doi.org/10.1128/AEM.72.5.3593-3599.2006   DOI
68 De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812-21. https://doi.org/10.1136/gutjnl-2015-309957   DOI
69 Hedemann MS, Bach Knudsen KE. Resistant starch for weaning pigs: effect on concentration of short chain fatty acids in digesta and intestinal morphology. Livest Sci. 2007;108:175-7. https://doi.org/10.1016/j.livsci.2007.01.045   DOI
70 De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691-6. https://doi.org/10.1073/pnas.1005963107   DOI
71 Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. https://doi.org/10.1186/s40168-016-0222-x   DOI
72 Hu R, Zeng F, Wu L, Wan X, Chen Y, Zhang J, et al. Fermented carrot juice attenuates type 2 diabetes by mediating gut microbiota in rats. Food Funct. 2019;10:2935-46. https://doi.org/10.1039/C9FO00475K   DOI
73 Li A, Ni W, Zhang Q, Li Y, Zhang X, Wu H, et al. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol. 2020;64:23-32. https://doi.org/10.1111/1348-0421.12749   DOI
74 Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015;91:1-9. https://doi.org/10.1093/femsec/fiu002   DOI
75 Valeriano VDV, Balolong MP, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol. 2017;122:554-67. https://doi.org/10.1111/jam.13364   DOI