• 제목/요약/키워드: MO optimization

Search Result 243, Processing Time 0.022 seconds

Optimization of 1,700 V Static Induction Thyristor Devices (1,700 V급 Static Induction Thyristor 소자 최적화)

  • Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.423-426
    • /
    • 2017
  • The designing approaches with consideration offabrication process technologies for high-frequency, high-powered, silicon-based static induction thyristors (SITH) are presented. The effects of doping concentration and thickness on the I-V characteristics and power performance of the devices are discussed. The dependence of SITH switching performances on material, geometric structure, and technological parameters isexamined by using two-dimensional simulations. Thick-epitaxy technology is found to be one of the most critical steps in realizing the proposed structure and switching times, $t_{off}$, of SITH, which may be reduced to below ${\sim}0.26{\mu}s$ for the proposed 1,700 V SITH devicesafter optimization.

Analysis and Optimization of Geometric Error in Surface Grinding using Taguchi Method (다구찌기법에 의한 연삭가공물의 형상오차 분석 및 최적화)

  • Chi, Long-Zhu;Hwang, Yung-Mo;Yoon, Moon-Chul;Ryoo, In-Il;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.13-19
    • /
    • 2004
  • This paper deals with the analysis of geometric error and the optimization of process parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Optimization of Sheet Metal Forming Process by using Decision-Making Theory (의사결정이론을 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.

Robust design of springback in U-channel forming using complex method (콤플렉스법을 이용한 U-채널 성형의 스프링백 강건 설계)

  • Yin, Jeong-Je;Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2013
  • Variations of springback in stamped parts are induced by the uncontrollable noises including the variation of incoming material properties, lubrication and other forming process parameters. Reduction of springback variation is very important during springback compensation processes on stamping dies and assembly processes. To reduce the variation of springback, a robust optimization methodology which uses complex method combined with orthogonal array is proposed. The proposed method is applied to the robust design of U-channel die for the reduction of side wall curl. It is shown that the drawbead and die radius of U-channel draw die can be effectively optimized by the proposed method.

Design Optimization Based on Designer's Preferences for the Mean and Variance (평균과 분산에 관한 설계자 선호에 기초한 설계 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

Optimum Design for Vibration Reduction of Compass Deck Structure in Ship (선박 컴퍼스 갑판 구조물의 저진동 최적설계)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2005
  • Recently, the vibration reduction at a local structure such as compass deck has been continuously requested by ship owner and shipbuilder. Because crews are afflicted with vibration, severe vibration problems even bring about a damage of structure. This study conducted to get an optimized stiffener size of compass deck to reduce the vibration level and decrease the weight of structure in ship. NASTRAN external call type optimization software (OptShip) which makes use of NASTRAN as a solver is used as an optimization tool. The results indicate that the optimum design is promising for real applications.

Minimization of Warpage in Injection-molded Parts By Optimal Design of U-type Ribs (U자형 리브의 최적설계에 의한 사출제품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kwang-Ho;Kim, Kyung-Mo;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 2008
  • In this research, the layout and geometry of U-type ribs in the part, including significant process conditions, are automatically optimized to reduce part warpage with robustness in consideration. The optimization procedure are based on an iterative redesign methodology integrated with computer aided injection molding simulation, Taguchi's Design of Experiment(DOE), and a direct search-based optimization method. The robustness of a design alternative is efficiently measured by introducing composite noise factor and Taguchi's signal-to-noise ratio. As a solution search methodology, the modified design space reduction method based on orthogonal arrays is employed to exploit an optimal robust design alternative. To illustrate the proposed methodology, a case study is performed on simulation results, where an optimal robust design alternative is obtained with a moderate number of iterations.

  • PDF

Implementation of an Efficient Rate-Distortion Optimization Algorithm for JPEG2000 (JPEG2000 영상 압축을 위한 효율적인 비율-왜곡 최적화 알고리즘 구현)

  • Moon Hyoung-Jin;Jung Gab-Cheon;Park Seong-Mo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.50-58
    • /
    • 2006
  • This paper describes the implementation of an efficient Rate-Distortion Optimization algerian to speed up rate control in JPEG2000. While the conventional algorithm determines the rate constant by averaging maximum R-D slope and minimum R-D slope for entire image, the proposed algorithm determines it by using R-D slopes of coding passes located near truncation point. Moreover, the rate allocation in proposed algorithm is conducted about only coding passes excluded from the previous rate allocation. As a result, it can reduce the number of operations required for rate-distortion optimization. The proposed algorithm was implemented in C programing language and was executed on the Altera Excalibur(EPXA4) development board.

Minimization of Warpage in Plastic Injection-Molded Parts Based on the ‘Pick-the-Winner' Rule and Design Space Reduction Method (Pick-the-Winner법과 공간축소법에 기반한 플라스틱 사출성형품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1171-1177
    • /
    • 2010
  • This paper presents a robust design procedure for minimizing warpage in plastic injection-molded products, where the Pick-the-Winner rule based on Taguchi's Orthogonal Array experiments and the Design Space Reduction Method are integrated for optimization. Two-step optimization approach is applied to reduce warpage in the part design stage and additionally to minimize the warpage in the process conditions design stage. Taguchi's S/N ratio is introduced as a design metric to evaluate robustness against process variations. The effectiveness of proposed optimization process is shown with an example of warpage minimization problem.

Optimization of Design Variable for Injection Molding Using a Modified Golden Section Search Method (수정된 황금분할 탐색법을 이용한 사출성형 설계인자의 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • The golden section search method is widely used to optimize a single design variable in many fields due to its superior advantages of search. In this paper, a new direct search method is proposed by modifying the search structure of the golden section search method; thus, it can be adapted in the optimization of a single design variable for the injection molding process. This proposed method is applied to determine an optimal gate position for the injection molding of a bezel of an automated teller machine for minimizing the injection pressure. Thus, an optimal gate position where the injection pressure is decreased by 4.5 MPa to that of the initial position was obtained with a small number of simulations. It is anticipated that the current proposed search method can be utilized as a practical tool for optimizing single variables for injection molding design.