다구찌기법에 의한 연삭가공물의 형상오차 분석 및 최적화

지용주*, 황영모*, 윤문철**, 류인일**, 하만경[#]

Analysis and Optimization of Geometric Error in Surface Grinding using Taguchi Method

Long-Zhu Chi*, Yung-Mo Hwang*, Moon-Chul Yoon**, In-Il Ryoo**, Man-Kyung Ha[#]

ABSTRACT

This paper deals with the analysis of geometric error and the optimization of process parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliablity of the results was evaluated by the ANOVA.

Key Words: Taguchi Method(다구찌 기법), Process Parameter(공정변수), Geometric Error(형상오차), Design of Experiments(실험계획법), ANOVA(분산분석)

1. 서 론

연삭가공은 숫돌에 불균일하게 분포된 미소입자를 절인으로 사용하기 때문에, 입자당 금속제거량이 매 우 적어 정밀한 가공표면을 얻을 수 있는 장점이 있 다. 평면 연삭에서의 평면도나 직진도 등 형상오차는 정밀기기의 직선 정도나 위치결정 정도에 직접 관계 될 뿐만 아니라 제품의 양부를 결정짓는 중요한 요인 이다. 연삭열이나 잔류응력에 의한 공작물의 변형^[1], 연삭점에서 발생하는 국부적 열변형^[1], 숫돌과 공작 물의 접촉강성 등이 형상오차에 영향을 미치는 것으 로 밝혀져 있다^[3]. 그 중에서 열변형 및 숫돌과 공작 물의 접촉강성이 지배적인 영향을 미치고 있다. 이와 같이 형상오차에 관여하는 가공변수가 다양하기 때 문에 연삭 가공면의 형상오차를 정확히 파악하기 힘 들다. 따라서 형상오차에 영향을 미치는 인자들의 영 향을 정확히 파악하고 체계화할 필요가 있다. 어떤 공정에 관여하는 인자와 특성치의 상호관계를 효과 적으로 분석하는 방법 중 실험계획법은 최소의 실험 회수에서 최대의 정보를 얻을 수 있으므로 널리 사 용되고 있다. Nakano 등^[4]은 평면연삭에서, 가공 중에

^{*} 부경대학교 대학원 정밀기계공학과

^{**} 부경대학교 기계공학부

[#] 교신저자 : 부경대학교 기계공학부 E-mail : hmk@pknu.ac.kr

일어나는 공작물의 열변형과 가공물의 형상오차에 대해 이론과 실험적 연구를 하였다. 또 Yokoyama 등 ^[5]은 숫돌축의 탄성변위와 피삭재의 열팽창량 등을 고려한 실험과 단순화된 3차원 모델을 이용한 해석 결과를 비교하였다. Shin 등^[6]은 실험계획법을 이용하 여 3차원 용접과 밀링 공정의 최적화 조건을 선정하 였다.

본 연구에서는 다구찌 기법을 이용하여 WA숫돌로 고속도강(SKH51)을 평면연삭 할 때 형상오차에 영향 을 미치는 4가지 인자들에 대하여 영향 정도를 분석 하고 형상오차를 줄이는 최적의 연삭 조건을 도출하 였다.

2. 형상오차 및 다구찌기법

2.1 연삭가공물의 형상오차

연삭가공 시에 발생하는 연삭력과 연삭열로 인하 여 연삭숫돌의 실제 절삭깊이는 설정 절삭깊이와는 다르게 되며, 실제의 절삭깊이는 가공 중 수시로 변 화한다. 이러한 변화가 가공면에 반영되어 가공 면은 결국 형상오차가 생기게 된다. Fig. 1은 연삭가공 면 의 형상오차 생성 원리 및 형태를 모델화하여 나타낸 것이다. 연삭열로 인해 공작물은 열팽창되어 A와 같 은 볼록한 형태로 변형하게 되며, 이러한 열변형은 실제 절삭깊이를 크게 하여, 공작물은 오목한 형태의 형상오차가 발생하게 된다. 또한 연삭력으로 인하여 숫돌축 및 공작물은 탄성변위가 발생하여 숫돌의 실 제 운동 궤적은 설정한 운동궤적 C와 다른 B의 경로 를 따르게 되며 실제 절입깊이는 설정 절입깊이보다 작아진다. 이러한 탄성변위는 연삭이 시작되는 부분 부터 서서히 축적되어 연삭이 끝날 때 제일 커지기 때문에, 결국 공작물은 연삭이 끝나는 점이 시작점보 다 높아지는 형태의 형상오차가 발생하게 된다. 그밖 에 유막에 의한 테이블의 부상 등 여러 인자들이 실 제 절삭깊이에 영향을 끼치지만 위에서 논한 두 가지 가 가장 지배적인 요인이다. 이 두 요인은 연삭가공 중에 지속적으로 작용하고 실제 절삭깊이에 대해 상 극적인 영향을 끼친다. 이렇듯 공작물의 열변형과 숫 돌축 및 공작물의 탄성 변위가 형상오차에 미치는 영

향이 서로 다르기 때문에, 가공조건이 다를 때 가공 면의 양상도 서로 다르다.

Fig. 1 Patterns of the workpiece deformation

Fig. 2는 특정한 조건으로 동일 공작물을 3회 반복 연삭가공한 후 가공면의 형상오차를 측정한 예를 나 타낸것이다. (a)에서 볼 수 있듯이 연삭깊이가 작고 테이블의 이송속도가 클 때, 발생하는 연삭열은 적고 숫돌과 공작물의 접촉시간이 짧기 때문에 연삭열에 의한 열변형은 아주 작고, 숫돌 축과 공작물의 탄성 변위가 주된 요인이기 때문에 연삭가공 면은 연삭이 끝나는 점이 연삭 시작점보다 높아지는 경사면으로 나타내고 있다. 반대로 (b)에서 볼 수 있듯이 연삭깊 이가 크고 테이블의 이송속도가 작을 때에는 열변형 이 주된 요인이므로 연삭가공 면은 오목한 형태를 나 타내고 있다. 이와 같이 형상오차의 발생원인이 복잡 하고, 또한 영향을 미치는 인자들이 다양하므로 형상 오차에 대한 보다 효과적인 평가기법이 필요한 실정 이다.

(b)

Fig. 2 Examples of geometric error in workpiece

2.2 다구찌기법

공정 변수와 최종 제품의 품질간의 관계 규명 및 최적화 작업에 사용될 실험 방법은 우선 실험횟수를 최소화하여 시간과 경제적 부담을 줄여야하며, 실험 에서 결정되는 공정변수가 잡음에 대하여 강건해야 하는 요구사항을 만족시켜야 한다. 이러한 실험 요구 조건을 만족시키기 위한 대표적인 실험계획법으로 다구찌기법을 사용하였다^[7]. 다구찌기법에서는 교란 인자의 영향으로부터 품질을 강건하게 유지하기 위 해서 SN비(Signal-to-noise ratio)를 사용한다. SN비는 신호 대 잡음의 비율을 의미하며, 다음과 같이 세 가 지로 분류된다.

(1) 망목특성:특정한 목표치가 주어져 있는 경우

$$n = 10\log\left(\frac{-\nu}{\sigma}\right) \tag{1}$$

(2) 망소특성:목표치가 작을수록 좋은 경우

$$n = -10 \log\left(\frac{1}{n} \sum_{i=0}^{n} y_i^2\right)$$
(2)

(3) 망대특성:목표치가 클수록 좋은 경우

$$n = -10\log\left(\frac{1}{n}\sum_{i=0}^{n}\frac{1}{y_i^2}\right)$$
(3)

여기서 y_i 는 실험에서 얻어진 데이터, y는 데이터들 의 평균, o는 표준편차를 나타내고 n은 실험회수를 의미한다.

다구찌기법의 또 하나의 특성은 직교배열표를 이 용한다는 것이다. 설계단계에서 다루어야 할 많은 설 계인자들을 주된 효과와 기술적으로 예상되는 인자 들 간의 상호작용을 고려하고 그 이외의 상호작용들 을 희생시켜 실험회수를 적게 할 수 있도록 만들어 놓은 표가 직교배열표이다. 직교배열표에서 모든 열 은 서로 직교하기 때문에 임의의 2열을 골라서 그 곱 의 합을 구하면 영(zero)이 된다.

2.2 분산분석

분산분석은 특성치의 산포를 제곱합으로 나타내고, 이 제곱합을 실험과 관련된 인자마다의 제곱합으로 분해하여 오차에 비해 특히 큰 영향을 주는 요인이 무엇인가를 찾아내는 분석방법이다. 각 요인의 제곱 합을 그 요인의 자유도로 나누면 그 요인의 제곱평균 이 되며 오차분산에 비하여 얼마나 큰가를 검토하게 된다. 따라서 분산분석이란 특성치의 산포를 요인별

로 분해하여 어느 요인이 큰 산포를 나타내고 있는가 를 규명하는 통계적 방법이 된다. 이때 얻어진 값들 의 확률적 유의 수준은 F-검증을 이용하여 평가한다.

3. 다구찌기법에 의한 형상오차 분석

3.1 실험장치 구성 및 방법

Fig. 3은 본 연구에서 사용한 실험 장치와 요인 및 특성치를 개략적으로 나타낸 것이다. 주축의 회전수 가 변속이 가능하도록 인버터(inverter)를 부착하였다. 실험조건이 변할때마다 숫돌을 드레싱하였고 가공물 은 3회 반복 연삭한 후, 가공면의 좌,우측과 중앙부에 서 연삭 방향을 따라 공작물 전체 길이의 좌표 값들 을 삼차원 측정기를 이용하여 측정하고, 그 값을 평 균하여 본 연구의 특성치인 형상오차로 하였다. 본 실험에 사용된 실험장치의 사양과 연삭 조건은 각각 Table 1, 2와 같다. 또한 공작물의 화학적 조성을 Table 3에 나타내었다.

Table 1 Experimental equipments

Instrument	Model
Grinding machine	Horizontal spindle surface grinder
3D Coordinate measuring device	OMS-600(Mahr, Germany)
Frequemcy inverter	SV037I3-2N (LG)

Table 2 Fixed conditions in experiment

Conditions	Values				
Grinding wheel	Abrasive: WA, Grade: K Structure: m, Binder: Vitrified				
Workpiece	SKH51(HRC55) (100×90×20mm)				
Dressing condition	Single point diamond dresser				
Grinding type	Plunge, up-grinding and wet				

Table 3 Chemical composition(%) of workpiece

С	Si	Mn	Р	S	Cr	W	Mo	V
0.88	0.24	0.29	0.02	0.002	4.01	5.6	4.62	1.63

3.2 인자 및 수준의 선정

본 연구에서는 Table 4와 같이 주축회전수, 테이블 의 이송속도, 연삭깊이 및 숫돌의 입도를 인자로 하 였고, 각 인자의 수준은 3수준으로 하였다.

Table 4 Factors and levels used in experiment

Sign	Eastans	Unit	Levels				
	Factors	Unit	0	1	2		
Α	Spindle speed	rpm	1500	1800	2100		
В	Table speed	m/min	6	8	10		
С	Depth of cut	μm	10	15	20		
D	Grain size	#	46	120	200		

3.3 실험결과 및 분석

본 실험에서는 각 인자의 주 효과 및 주축 회전수 (A), 테이블의 이송속도(B), 연삭깊이(C) 사이의교호 작용을 고려하여 총 27회의 실험회수를 가지는 $L_{27}(3^{13})$ 표준 직교배열표를 적용하였다.

Table 5는 L_{27} (3¹³) 표준 직교배열표에 각 인자와 앞에서 논한 교호작용 및 인자별 각 3수준을 형상오 차 측정치와 함께 배열한 것이다. 직교배열표에 의한 가공실험을 통하여 측정된 형상오차를 토대로 인자 별 각 수준의 망소특성치 n를 구하여 그래프로 나타 내면 Fig. 4와 같다. Fig. 4로부터 알 수 있듯이 본 연 구의 실험조건 범위에서 형상오차를 최소화할 수 있 는 요인 및 수준의 조합은 $C_0A_1D_0B_1$ 이며, 이를 나 타내면 Table 6과 같다.

연삭깊이는 제일 작은 10, 주축회전속도는 중간 치인 1800rpm, 숫돌입자는 입자가 제일 큰 #46, 테이 블의 이송속도는 중간치인 8m/min가 형상오차를 최 소화 할 수 있는 최적의 가공조건으로 나타났음을 알 수 있다. 연삭깊이가 작을 수록 형상오차가 작아지는 데 이는 연삭깊이가 작을수록 연삭력, 연삭온도도 따 라서 낮아지기 때문이다. 주축회전속도는 중간치인 1800rpm에서 형상오차가 제일 작게 나타나는데 이는 주축회전속도가 높아지면 숫돌과 공작물의 접촉면 온도도 높아지며 따라서 열변형이 증가하기 때문이 고, 주축회전속도가 낮아지면 연삭력이 커짐으로 하 여 주축의 탄성변위가 따라서 커지기 때문이라고 보

	Factor								Geometric					
No	Α	В	a× b	$a \times b^2$	C	a×c	$a \times c^2$	$b \times c$	D	e	$b \times c^2$	e	e	error (µm)
1	0	0	0	0	0	0	0	0	0	0	0	0	0	15
2	0	0	0	0	1	1	1	1	1	1	1	1	1	23
3	0	0	0	0	2	2	2	2	2	2	2	2	2	29
4	0	1	1	1	0	0	0	1	1	1	2	2	2	14
5	0	1	1	1	1	1	1	2	2	2	0	0	0	20
6	0	1	1	1	2	2	2	0	0	0	1	1	1	17
7	0	2	2	2	0	0	0	2	2	2	1	1	1	22
8	0	2	2	2	1	1	1	0	0	0	2	2	2	19
9	0	2	2	2	2	2	2	1	1	1	0	0	0	26
10	1	0	1	2	0	1	2	0	1	2	0	1	2	16
11	1	0	1	2	1	2	0	1	2	0	1	2	0	16
12	1	0	1	2	2	0	1	2	0	1	2	0	1	20
13	1	1	2	0	0	1	2	1	2	0	2	0	1	11
14	1	1	2	0	1	2	0	2	0	1	0	1	2	13
15	1	1	2	0	2	0	1	0	1	2	1	2	0	20
16	1	2	0	1	0	1	2	2	0	1	1	2	0	12
17	1	2	0	1	1	2	0	0	1	2	2	0	1	18
18	1	2	0	1	2	0	1	1	2	0	0	1	2	17
19	2	0	2	1	0	2	1	0	2	1	0	2	1	21
20	2	0	2	1	1	0	2	1	0	2	1	0	2	14
21	2	0	2	1	2	1	0	2	1	0	2	1	0	22
22	2	1	0	2	0	2	1	1	0	2	2	1	0	12
23	2	1	0	2	1	0	2	2	1	0	0	2	1	16
24	2	1	0	2	2	1	0	0	2	1	1	0	2	25
25	2	2	1	0	0	2	1	2	1	0	1	0	2	14
26	2	2	1	0	1	0	2	0	2	1	2	1	0	27
27	2	2	1	0	2	1	0	1	0	2	0	2	1	26

Table 5 Orthogonal array table for $L_{27}(3^{13})$

여진다. 연삭입도에서는 입자크기가 제일 큰 #46에서 형상오차가 제일 작게 나타나는데 이는 입자가 클수 록 숫돌 표면의 단위면적당 입자의 수가 감소하고 그 만큼 칩이 배출될 수 있는 공간이 커지기 때문에 연 삭력은 작아지고, 연삭온도도 따라서 낮아지기 때문 이다. 테이블의 이송속도는 중간치인 8m/min에서 형 상오차가 제일 작게 나타나는데 이는 이송속도가 작 으면 공작물과 숫돌의 접촉시간이 길어져 연삭온도 가 높아지며 따라서 열변형이 커지고, 반대로 이송속 도가 너무 크면 연삭력이 커짐으로 하여 주축의 탄성 변위가 커지기 때문이라고 보여진다.

Table 6 Optimal sets in this study

Factor	Values
Spindle speed	1800rpm
Table speed	8m/min
Depth of cut	10 <i>µ</i> m
Grain size	#46

**: 99% confidence level, *: 95% confidence level

Fig. 4 Effect of grinding parameters on geometric error calculated by S/N ratio

Table 7 ANOVA table for geometric error

Factor	S	Φ	V	F ₀	F(0.05)	F(0.01)
A	110.9	2	55.45	3.74	5.14	10.9
В	70.7	2	35.35	2.39	5.14	10.9
С	236.0	2	118.0	7.96	5.14	10.9
D	89.3	2	44.65	3.01	5.14	10.9
IMESB	32.9	4	8.23	0.56	4.53	9.15
IMESC	7.6	4	1.9	0.13	4.53	9.15
IMESC	25.7	4	6.43	0.43	4.53	9.15
e	88.9	6	14.82			
Т	662.0	26				

Table 8 ANOVA table for geometric error after pooling

Factor	S	Φ	V	F ₀	F(0.05)	F(0.01)
А	110.9	2	55.45	6.43**	3.55	6.01
В	70.7	2	35.35	4.10*	3.55	6.01
С	236.0	2	118.0	13.69**	3.55	6.01
D	89.3	2	44.65	5.18*	3.55	6.01
e	155.1	18	8.62			
Т	662.0	26				

 Table 7은 측정한 형상오차를 분산분석한 결과이

 다. Table 7에서 F₀ 값을 살펴보면 A×B, B×C,

 A×C의 작용은 무시할 수 있을 만큼 작으므로 이

Fig. 5 Percentage distribution of factors

를 오차항에 풀링하여 다시 분산분석한 결과를 Table 8에 나타내었다. 한편, 각 인자들이 형상오차에 미치 는 기여율(percentage distribution)은 Fig. 5와 같다. 형 상오차에 기여하는 인자는 연삭깊이(C)-주축속도(A)-숫돌입도(D)-테이블의 이송속도(B)의 순서로 나타나 고 있다. 연삭깊이가 형상오차에 제일 큰 영향을 끼 치는 것은 연삭깊이가 연삭력, 숫돌과 공작물의 접촉 면 온도에 제일 큰 영향을 주기 때문이라고 사료된 다.

4. 결 론

본 연구에서는 다구찌기법을 이용하여 고속도강을 WA숫돌로 평면연삭할 때, 연삭인자가 연삭가공면 형 상오차에 미치는 영향을 분석하고 연삭가공면 형상 오차를 최소화할 수 있는 최적 연삭조건을 선정하는 것으로 다음과 같은 결론을 얻었다.

- 본 연구의 실험조건 범위에서 형상오차를 최소화 할 수 있는 최적 연삭조건으로는 주축회전속도 1800rpm, 테이블이송속도 8.0m/min, 연삭깊이 10 /m, 숫돌입자 #46임을 알 수 있었다.
- 연삭가공면의 형상오차에 영향을 미치는 인자는 연삭깊이(C)-주축속도(A)-숫돌입도(D)-테이블의 이 송속도(B)의 순서로 나타났다.
- 다구찌기법을 통해 최소의 실험회수로 통계적 분석 을 거쳐 연삭가공 면 형상오차에 영향을 미치고 있

는 가공인자, 연삭가공면 형상오차를 최소화할 수 있는 최적 연삭조건을 규명하는 것이 가능하였다.

후 기

본 논문은 한국과학재단 지정 부경대학교 친환경 첨단에네지기계연구센터(과제번호:R12-2003-001 -02003-0)지원에 의하여 연구되었으며 이에 감사드립 니다.

참고문헌

- Kovach, J. A. and Malkin, S., 1998, "Thermally Induced Grinding Damage in Superalloy Materials," *CIRP*, Vol. 37, pp. 309-313.
- Okuyama, S. and Kawamura, S., 1979, "Local Thermal Expansion of Workpiece under Grinding," *JSPE*, Vol. 45, No. 5, pp. 418-424.
- Nishihara, T., Okuyama, S. and Kawamura, S., 1988, "Study on the Flatness of Work Produced by Surface Grinding - Effect of Bending Caused Grinding Heat," *JSPE*, Vol. 54, No. 8, pp. 1496-1501.
- Nakano, Y. and Ota, K., 1996, "Analysis of Steady State Thermal Deformations of Workpiece During Surface Grinding Operation," *JSPE*, Vol. 61, pp. 364-368.
- Okuyama, S., 1998, "Study on the Flatness of Work Produced by Surface Grinding," *JSPE*, Vol. 64, pp. 1496-1501.
- Shin, S. H., 2000, "Optimiztion of 3D Welding and Milling Process by Taguchi Method," KSPE, Vol. 17, pp. 46-52.
- Park, S. H., "Modern Design of Experiments," Minyongsa, pp. 16-18, 2001.