• 제목/요약/키워드: MEMS fabrication

검색결과 415건 처리시간 0.033초

미세금형제작을 위한 가공기술개발 (Development of Machining Technology for Micro Dies and Molds)

  • 이응숙;신영재;강재훈;제태진;이재경;이현용;이상조;최헌종;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1047-1050
    • /
    • 2000
  • As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.

  • PDF

정전기력으로 구동되는 마이크로 캔틸레버 질량 센서의 제작과 특성 (Fabrication and Characterization of Electrostatically Actuated Microcantilever Mass Sensors)

  • 이정철;최범규
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.40-45
    • /
    • 2011
  • Microcantilevers have been actively used in probe-based microscopy and gravimetric sensing for biological or chemical analytes. To integrate actuation or detection schemes in the structure, typical fabrication processes include several photolithographic steps along with conventional MEMS fabrication. In this paper, a simple and straightforward way to fabricate and operate silicon microcantilever mass sensors is presented. The fabricated microcantilever sensors which can be electrostatically actuated require only two photolithographic steps. Resonant characteristics of fabricated microcantilevers are measured with a custom optical-lever and results show size-dependent quality factors. Using a $40\;{\mu}m$ long, $7\;{\mu}m$ wide, and $3\;{\mu}m$ thick cantilever, we achieved subfemtogram mass resolution in a 1 Hz bandwidth.

온도장 가시화를 위한 연성회로기판을 이용한 온도센서 어레이 제작 및 성능평가 (Fabrication and Performance Evaluation of Temperature Sensor Matrix Using a Flexible Printed Circuit Board for the Visualization of Temperature Field)

  • 안철희;김형훈;차제명;권봉현;하만영;박상후;정지환;김귀순;조종래;손창민;이정호;고정상
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.17-21
    • /
    • 2010
  • This paper presents the fabrication and performance measurement of a temperature sensor array on a flexible substrate attachable to a curved surface using MEMS technology. Specifically, the fabrication uses the well-developed printed circuit board fabrication technology for complex electrode definition. The temperature sensor array are lifted off with a $10{\times}10$ matrix in a $50\;mm{\times}50\;mm$ to visualize temperature distribution. Copper is used as temperature sensing material to measure the change in resistances with temperature increase. In a thermal oven with temperature control, the temperature sensor array is Characterized. The constant slope of resistance change is obtained and temperature distribution is measured from the relationship between resistance and temperature.

Investigation of Pyrolyzed Polyimide Thin Film as MEMS Material

  • Naka, Keisuke;Nagae, Hideki;Ichiyanagi, Masao;Jeong, Ok-Chan;Konishi, Satoshi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.38-44
    • /
    • 2005
  • Pyrolyzed polyimide is explored in terms of MEMS material. This paper describes chemical, electrical, mechanical properties of pyrolyzed polyimide (PIX-1400) thin film as MEMS material. When polyimide thin film was pyrolyzed at $800^{\circ}C$ for 60 minutes in $N_{2}$ ambient, the residual ratio of pyrolyzed film thickness measured with a surface profiler is about 49 %, and the resistivity is about $2.17{\times}10^{-2}\;{Omega}cm$. From the result of the load-deflection test, the estimated Young's modulus and initial average stress of pyrolyzed polyimide are 67 GPa and 30 MPa, respectively. As one demonstration of MEMS structures of pyrolyzed polyimide, the fabrication method of the microbridge structure is proposed for a micro heater and a resonator.

Silicon Prism-based NIR Spectrometer Utilizing MEMS Technology

  • Jung, Dong Geon;Son, Su Hee;Kwon, Sun Young;Lee, Jun Yeop;Kong, Seong Ho
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.91-95
    • /
    • 2017
  • Recently, infrared (IR) spectrometers have been required in various fields such as environment, safety, mobile, automotive, and military. This IR dispersive sensor detection method of substances is widely used. In this study, we fabricated a silicon (Si) prism-based near infrared (NIR) spectrometer utilizing micro electro mechanical system (MEMS) technology. Si prism-based NIR spectrometer utilizing MEMS technology consists of upper, middle, and lower substrates. The upper substrate passes through the incident IR ray selectively. The middle substrate, acting as a prism, disperses and separates the incident IR beam. The lower substrate has an amorphous Si (a-Si)-based bolometer array to detect the IR spectrum. The fabricated Si prism-based NIR spectrometer utilizing MEMS technology has the advantage of a simple structure, easy fabrication steps, and a wide NIR region operating range.

MEMS 기술을 이용한 프로브 카드의 탐침 제작 (Fabrication of Tip of Probe Card Using MEMS Technology)

  • 이근우;김창교
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.361-364
    • /
    • 2008
  • Tips of probe card were fabricated using MEMS technology. P-type silicon wafer with $SiO_2$ layer was used as a substrate for fabricating the probe card. Ni-Cr and Au used as seed layer for electroplating Ni were deposited on the silicon wafer. Line patterns for probing devices were formed on silicon wafer by electroplating Ni through mold which formed by MEMS technology. Bridge structure was formed by wet-etching the silicon substrate. AZ-1512 photoresist was used for protection layer of back side and DNB-H100PL-40 photoresist was used for patterning of the front side. The mold with the thickness of $60{\mu}m$ was also formed using THB-120N photoresist and probe tip with thickness of $50{\mu}m$ was fabricated by electroplating process.

Fabrication of Micro-inductor and Capacior For RF MEMS Applications

  • Cho, Bek-Hee;Lee, Jae-Ho;Bae, Young-Ho;Cho, Chan-Sub;Lee, Jong-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권2호
    • /
    • pp.102-110
    • /
    • 2002
  • In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS(microelectro-mechanical systems) application with high performance and various function. In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro-device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS application with high performance and various functions.

CPW MMIC 칩 실장을 위한 실리콘 MEMS 패키지 설계 (Design of Silicon MEMS Package for CPW MMICs)

  • 김진양;김성진;이해영
    • 대한전자공학회논문지TC
    • /
    • 제39권11호
    • /
    • pp.40-46
    • /
    • 2002
  • 본 논문에서는 CPW MMIC 실장시 발생되는 기생 공진 현상을 제거하기 위한 새로운 구조의 실리콘 MEMS 패키지를 제안하였다. 또한 세 가지 형태의 실리콘 칩 캐리어(gold-plated high resistivity, lightly doped, high resistivity) 상에 GaAs CPW 패턴을 제작하고 해석/측정함으로써, 제안된 패키지의 성능을 확인하였다. 해석 및 측정 결과 제안된 MEMS 패키지는 비저항이(resistivity) 15 ${\Omega}{\cdot}$㎝인 실리콘 캐리어(carrier)를 사용함으로써 기생 공진 현상을 효과적으로 억제시킬 수 있었다.