• 제목/요약/키워드: MEMS characterization

검색결과 83건 처리시간 0.021초

SOI 기판을 이용한 Thermal Probe 어레이 제작 및 특성 평가 (Fabrication and Characterization of Thermal Probe Array on SOI Substrates)

  • 조주현;나기열;박근형;이재봉;김영석
    • 한국전기전자재료학회논문지
    • /
    • 제18권11호
    • /
    • pp.990-995
    • /
    • 2005
  • This paper reports the fabrication and characterization of $5\;\times\;5$ thermal cantilever array for nano-scaled memory device application. The $5\;\times\;5$ thermal cantilever array with integrated tip heater has been fabricated with MEMS technology on SOI wafer using 7 photo masking steps. All single-level cantilevers have a diode in order to eliminate any electrical cross-talk between adjacent tips. Electrical measurements of fabricated thermal cantilever away show its own thermal heating mechanism. Thermal heating is demonstrated by the reflow of coated photoresist on the cantilever array surface.

MEMS 공정에 의해 제작된 PZT 마이크로 켄틸레버의 전기기계적 거동 및 질량에 대한 공진특성 분석 (Characterization of Electromechanical Properties and Mass Effect of PZT Microcantilever)

  • 황교선;이정훈;박정호;김태송
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.116-122
    • /
    • 2004
  • A micromachined self-exited piezoelectric cantilever has been fabricated using PZT(52/48) thin film. For the application to biosensor using antigen-antibody interaction, electromechanical properties such as resonant frequency and quality factor of micromachined piezoelectric cantilever were important factors. Electromechanical properties and resonant behaviors of microfabricated cantilever were simulated by FEA (Finite Element Analysis) using Coventorware$^{TM}$2003. And these characterization of microcantilever were measured by using LDV(Laser Doppler Vibrometer) to compare with FEA data. We present the resonant frequency shift of micromachined piezoelectric cantilevers due to combination of mass loading and change of spring constant by gold deposition. Experimental mass sensitivities of microcantilever were characterized by Au deposition on the backside of microcantilever. Mass sensitivities with $100{\times}300$ ${\mu}{\textrm}{m}$ dimension cantilever from simulation and experimental were 5.56 Hz/ng and 16.8 Hz/ng respectively.y.

Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착 (Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device)

  • 윤영수;정형진;신영화
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가 (Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application)

  • 최기용;최덕균;박지연;김태송
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe

MEMS 적용을 위한 thermal CVD 방법에 의해 증착한 SiC막의 etching 특성 평가 (Reactive ion etching characterization of SiC film deposited by thermal CVD method for MEMS application)

  • 최기용;최덕균;박지연;김태송
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.868-871
    • /
    • 2003
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability. Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of $1000^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using $SF_6/O_2$ and $CF_4/O_2$ gas mixture. Etch rate have been investigated as a function of oxygen concentration in the gas mixture, RF power, and working pressure. Etch rate was measured by surface profiler and FE-SEM. $SF_6/O_2$ gas mixture has been shown high etch rate than $CF_4/O_2$ gas mixture. Maximum etch rate appeared at 450W of RF power. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observed.

  • PDF

Low Actuation Voltage Capacitive Shunt RF-MEMS Switch Using a Corrugated Bridge with HRS MEMS Package

  • Song Yo-Tak;Lee Hai-Young;Esashi Masayoshi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권2호
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents the theory, design, fabrication and characterization of the novel low actuation voltage capacitive shunt RF-MEMS switch using a corrugated membrane with HRS MEMS packaging. Analytical analyses and experimental results have been carried out to derive algebraic expressions for the mechanical actuation mechanics of corrugated membrane for a low residual stress. It is shown that the residual stress of both types of corrugated and flat membranes can be modeled with the help of a mechanics theory. The residual stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element method(FEM) analysis and experimental results. The corrugated electrostatic actuated bridge is suspended over a concave structure of CPW, with sputtered nickel(Ni) as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon(HRS) substrate. The corrugated switch on concave structure requires lower actuation voltage than the flat switch on planar structure in various thickness bridges. The residual stress is very low by corrugating both ends of the bridge on concave structure. The residual stress of the bridge material and structure is critical to lower the actuation voltage. The Self-alignment HRS MEMS package of the RF-MEMS switch with a $15{\Omega}{\cdot}cm$ lightly-doped Si chip carrier also shows no parasitic leakage resonances and is verified as an effective packaging solution for the low cost and high performance coplanar MMICs.

Epi poly를 이용한 MEMS 소자용 웨이퍼 단위의 진공 패키징에 대한 연구 (A Study on Wafer Level Vacuum Packaging using Epi poly for MEMS Applications)

  • 석선호;이병렬;전국진
    • 반도체디스플레이기술학회지
    • /
    • 제1권1호
    • /
    • pp.15-19
    • /
    • 2002
  • A new vacuum packaging process in wafer level is developed for the surface micromachining devices using glass silicon anodic bonding technology. The inside pressure of the packaged device was measured indirectly by the quality factor of the mechanical resonator. The measured Q factor was about 5$\times10^4$ and the estimated inner pressure was about 1 mTorr. And it is also possible to change the inside pressure of the packaged devices from 2 Torr to 1 mTorr by varying the amount of the Ti gettering material. The long-term stability test is still on the way, but in initial characterization, the yield is about 80% and the vacuum degradation with time was not observed.

  • PDF

Chevron형 bi-stable MEMS 구동기의 모델링 및 실험적 응답특성 분석 (Modeling and Experimental Response Characterization of the Chevron-type Bi-stable Micromachined Actuator)

  • 황일한;심유석;이종현
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.203-209
    • /
    • 2004
  • Compliant bi-stable mechanism allows two stable states within its operation range staying at one of the local minimum states of the potential energy. Energy storage characteristics of the bi-stable mechanism offer two distinct and repeatable stable states, which require no power input to maintain it at each stable state. This paper suggests an equivalent model of the chevron-type bi-stable microactuator using the equivalent spring stiffness in the rectilinear and the rotational directions. From this model the range of spring stiffness where the bi-stable mechanism can be operated is analyzed and compared with the results of the FEA (Finite Element Analysis) using ANSYS for the buckling analysis, both of which show a good agreement. Based on the analysis, a newly designed chevron-type bi-stable MEMS actuator using hinges is suggested for the latch-up operation. It is found that the experimental response characteristics of around 36V for the bi-stable actuation for the 60$mu extrm{m}$ stroke correspond very well to the results of the equivalent model analysis after the change in cross-sectional area by the fabrication process is taken into account. Together with the resonance frequency experiment where 1760Hz is measured, it is shown that the chevron-type bi-stable MEMS actuator using hinges is applicable to the optical switch as an actuator.

Top-down 방식으로 제작한 실리콘 나노와이어 ISFET 의 전기적 특성 (A Study on the Electrical Characterization of Top-down Fabricated Si Nanowire ISFET)

  • 김성만;조영학;이준형;노지형;이대성
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.128-133
    • /
    • 2013
  • Si Nanowire (Si-NW) arrays were fabricated by top-down method. A relatively simple method is suggested to fabricate suspended silicon nanowire arrays. This method allows for the production of suspended silicon nanowire arrays using anisotropic wet etching and conventional MEMS method of SOI (Silicon-On-Insulator) wafer. The dimensions of the fabricated nanowire arrays with the proposed method were evaluated and their effects on the Field Effect Transistor (FET) characteristics were discussed. Current-voltage (I-V) characteristics of the device with nanowire arrays were measured using a probe station and a semiconductor analyzer. The electrical properties of the device were characterized through leakage current, dielectric property, and threshold voltage. The results implied that the electrical characteristics of the fabricated device show the potential of being ion-selective field effect transistors (ISFETs) sensors.