• 제목/요약/키워드: MEMS Fabrication Process

검색결과 189건 처리시간 0.028초

MEMS용 MCA/Si diaphragm 구조의 변위해석 (Deflection Analysis of MCA/Si diaphragm for MEMS)

  • 김재민;이종춘;윤석진;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.372-375
    • /
    • 2003
  • MCA deflection control is a important technology for the development of MEMS applications. In this study, deflection analysis at the MLA/Si diaphragm was investigated by Finite Element Method. Analysis of Si diaphragm combined with MCA has been implemented into the ANSYS (Solid5 and Solid45). On the basis of this structure, deflection versus MCA number of layers has been modelled and MCA/Si contact area characteristics with different diaphragm conditions were analyzed. Consequently, it is expected that fabrication technology of MCA/Si diaphragm could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성 (Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics)

  • 정귀상;우형순
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.

Characterization of Photoresist Processing by Statistical Design of Experiment (DOE)

  • Kim, Gwang-Beom;Park, Jae-Hyun;Soh, Dae-Wha;Hong, Sang-Jeen
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.43-44
    • /
    • 2005
  • SU-8 is a epoxy based photoresist designed for MEMS applications, where a thick, chemically and thermally stable image is desired. But SU-8 has proven to be very sensitive to variation in processing variables and hence difficult to use in the fabrication of useful structures. In this paper, negative SU-8 photoresist processed has been characterized in terms of delamination. Based on a full factorial designed experiment. Employing the design of experiment (DOE), a process parameter is established, and analyzing of full factional design is generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

  • PDF

Characterization of Negative Photoresist Processing by Statistical Design of Experiment (DOE)

  • Mun Sei-Young;Kim Gwang-Beom;Soh Dea-Wha;Hong Sang Jeen
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.191-194
    • /
    • 2005
  • SU-8 is a epoxy based photoresist designed for MEMS applications, where a thick, chemically and thermally stable image are desired. However SU-8 has proven to be very sensitive to variation in processing variables and hence difficult to use in the fabrication of useful structures. In this paper, negative SU-8 photoresist processed has been characterized in terms of delamination, based on a full factorial designed experiment. Employing the design of experiment (DOE), a process parameter is established, and analyzing of full factorial design is generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

마이크로 스프링 구조를 갖는 121 pins/mm2 고밀도 프로브 카드 제작기술 (Development of 121 pins/mm2 High Density Probe Card using Micro-spring Architecture)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.749-755
    • /
    • 2007
  • Recently, novel MEMS probe cards can support reliable wafer level chip test with high density probing capacity. However, manufacturing cost and process complexity are crucial weak points for low cost mass production. To overcome these limitations, we have developed micro spring structured MEMS probe card. For fabrication of micro spring module, a wire bonder and electrolytic polished gold wires are used. In this case, stringent tension force control is essential to guarantee the low level contact resistance of micro spring for reliable probing performance. For this, relation between tension force of fabricated probe card and contact resistance is characterized. Compare to conventional probe cards, developed MEMS probe card requires fewer fabrication steps and it can be manufactured with lower cost than other MEMS probe cards. Also, due to the small contact scratch patterns, we expect that it can be applied to bumping types chip test which require higher probing density.

웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러 (Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive)

  • 김민수;유병욱;진주영;전진아;;박재형;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF

MEMS 공정을 이용한 전도성 고분자 액추에이터용 마이크로 구조물의 제작 (Fabrication of Microstructures for Conductive Polymer Actuators Using MEMS Process)

  • 이승기;정승환
    • 센서학회지
    • /
    • 제12권4호
    • /
    • pp.156-163
    • /
    • 2003
  • 일반적인 표면 마이크로머시닝 공정과 고분자의 중합공정을 결합하여 전도성 고분자인 폴리피롤 액추에이터를 제작하였다. 폴리피롤 액추에이터의 제작 공정을 검증하기 위한 가장 기본적인 구조물은 폴리피롤 캔틸레버이며 이를 이용하여 세포 조작에 응용 가능한 폴리피롤 그리퍼 및 밸브의 기본 구조물들을 제작하였다. 그리퍼는 손가락과 유사한 형태로 뼈에 해당하는 단단한 고분자와 근육에 해당하는 폴리피롤 등으로 구성된다. 밸브는 폴리피롤 캔틸레버에 유로가 결합된 형태로 제작되었다. 제안한 폴리피롤 액추에이터의 제작 공정 및 기본 구조물들은 세포 조작기구와 같은 바이오 관련 응용에 이용될 수 있을 것이다.

실리콘 선택적 기상 성장을 이용한 마이크로 센서에 응용되는 구조물 제조법 (Application of selective Epitaxial Growth of Silicon on MEMS Structure)

  • 박정호;김종관;김상영;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1025-1027
    • /
    • 1995
  • SEG(Selective Epitaxial Growth) and ELO(Epitaxial Lateral Growth) of Silicon offer new opportunities in the fabrication of MEMS(Micro Electro-Mechanical Systems) structures. SEG of silicon enables the stacking of junctions in addition to those resulting from the standard bipolar process and this properly was utilized for the fabrication of an improved-performance color sensor. When the crystalline growth takes place through the seed windows and proceeds over the dielectric, after reaching the surface, it form an ELO silicon layer and this ELO-Si can be modified into various structures for MEMS application such as cantilevers, beams, diaphragms.

  • PDF

Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계 및 제작 (Electrostatic 2-axis MEMS Stage for an Application to Probe-based Storage Devices)

  • 백경록;전종업
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.173-181
    • /
    • 2005
  • We report on the design and fabrication of an electrostatic 2-axis MEMS stage possessing a platform with a size of $5{times}5mm^2$. The stage, as a key component, would be used in developing probe-based storage devices in the future. It was fabricated by forming numerous $5{\times}5{\mu}m^2$ etching holes in the central platform, as a result, reducing the total number of masks to 1, thereby simplifying the whole fabrication process. Experimental results show that the driving range of the stage was $32{\mu}m$ at the supplied voltage of 20V and the natural frequency was approximately 300Hz. The mechanical coupling between x- and y-motion was also measured and verified to be $25\%$.