• 제목/요약/키워드: MEMS Capacitive Sensor

검색결과 21건 처리시간 0.028초

MEMS 기술을 이용한 온도, 압력, 습도 복합 센서 (Multi-functional (Temperature, Pressure, Humidity) Sensor by MEMS technology)

  • 권상욱;원종화
    • 대한전자공학회논문지SD
    • /
    • 제42권11호
    • /
    • pp.1-8
    • /
    • 2005
  • 본 논문은 MEMS (Micro-Mechanical-Electronic System) 기술을 이용한 온도, 압력, 습도 복합 센서의 설계와 제작, 그리고 평가에 관한 것이다. 이러한 MEMS 복합 센서는 휴대 전화나 PDA와 같이 가정용 제품에 사용되어 환경을 모니터링하는 건강 측정용 센서로서 사용될 것이다. 이 연구의 범위는 이러한 개별 센서의 연구 및 모든 센서를 하나의 실리콘 웨이퍼 상에서 집적할 수 있는 구조에 관한 연구, 그리고 복합 센서를 MEMS 공정에서 제작할 수 있는 공정 호환성에 대한 연구와 얻어진 센서 prototype의 측정, 평가로 이루어져 있다. 이 연구에서 우리는 온도와 압력 센서의 경우에는 선형성과 이력특성이 $1\%FS$안에 들어오는 특성을 얻었으며 단지 습도 센서의 경우에는 $5\%FS$에 해당하는 선형성과 이력 특성을 얻었다. 다만 원리적으로 습도 센서의 동작 특성은 비선형적이며 우리가 3차로 근사화할 경우에 보다 낳은 결과를 얻을 것을 기대할 수 있다. 이러한 특성을 더욱 개선하기 위한 것은 추후의 연구 영역이 될 것이다.

1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks

  • Lee, Sung-Sik;Lee, Ah-Ra;Je, Chang-Han;Lee, Myung-Lae;Hwang, Gunn;Choi, Chang-Auck
    • ETRI Journal
    • /
    • 제30권5호
    • /
    • pp.644-652
    • /
    • 2008
  • In this paper, a low-power CMOS interface circuit is designed and demonstrated for capacitive sensor applications, which is implemented using a standard 0.35-${\mu}m$ CMOS logic technology. To achieve low-power performance, the low-voltage capacitance-to-pulse-width converter based on a self-reset operation at a supply voltage of 1.5 V is designed and incorporated into a new interface circuit. Moreover, the external pulse signal for the reset operation is made unnecessary by the employment of the self-reset operation. At a low supply voltage of 1.5 V, the new circuit requires a total power consumption of 0.47 mW with ultra-low power dissipation of 157 ${\mu}W$ of the interface-circuit core. These results demonstrate that the new interface circuit with self-reset operation successfully reduces power consumption. In addition, a prototype wireless sensor-module with the proposed circuit is successfully implemented for practical applications. Consequently, the new CMOS interface circuit can be used for the sensor applications in ubiquitous sensor networks, where low-power performance is essential.

  • PDF

MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로 (A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors)

  • 주민식;정백룡;최세영;양민재;윤은정;유종근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.569-572
    • /
    • 2014
  • 본 논문에서는 MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로를 설계하였다. 설계된 회로는 커패시턴스-전압 변환기(CVC), 2차 스위치드 커패시터 ${\Sigma}{\Delta}$ 변조기 및 비교기로 구성되어있다. 또한 일정한 바이어스를 공급해주는 바이어스 회로를 추가하였다. 전체적인 회로의 저주파 잡음과 오프셋을 감소시키기 위하여 Correlated-Double-Sampling(CDS) 기법과 Chopper-Stabilization(CHS) 기법을 적용하였다. 설계 결과 CVC는 20.53mV/fF의 민감도와 0.036%의 비선형성특성을 보였으며, ${\Sigma}{\Delta}$ 변조기는 입력전압 진폭이 100mV가 증가할 때, 출력의 듀티 싸이클은 약 5%씩 증가하였다. 전체회로의 선형성 에러는 0.23% 이하이며, 전류소모는 0.73mA이다. 제안된 회로는 0.35um CMOS 공정을 이용하여 설계되었으며, 입력전압은 3.3V이다. 설계된 칩의 크기는 패드를 포함하여 $1117um{\times}983um$ 이다.

  • PDF

약물 투여에 따른 기니피그 대장 운동 측정을 위한 압력센서 개발 (Development of Pressure Sensor for Identifying Guinea Pig's Large Intestinal Motility Caused by Drug)

  • 박재순;박정호;김응보;조성환;장수정;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, in order to quantify the peristalsis occurrence in a guinea pig's large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig's large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig's large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig's large intestine was proportional to the degree of drug injection.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Embedded 기술을 이용한 COS MEMS 시스템 설계 (COS MEMS System Design with Embedded Technology)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서 (MEMS based capacitive biosensor for real time detection of bacterial growth)

  • 서혜경;임대호;임미화;김종백;신전수;김용준
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.195-202
    • /
    • 2008
  • A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

Low-Noise MEMS Microphone Readout Integrated Circuit Using Positive Feedback Signal Amplification

  • Kim, Yi-Gyeong;Cho, Min-Hyung;Lee, Jaewoo;Jeon, Young-Deuk;Roh, Tae Moon;Lyuh, Chun-Gi;Yang, Woo Seok;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.235-243
    • /
    • 2016
  • A low-noise readout integrated circuit (ROIC) for a microelectromechanical systems (MEMS) microphone is presented in this paper. A positive feedback signal amplification technique is applied at the front-end of the ROIC to minimize the effect of the output buffer noise. A feedback scheme in the source follower prevents degradation of the noise performance caused by both the noise of the input reference current and the noise of the power supply. A voltage booster adopts noise filters to cut out the noise of the sensor bias voltage. The prototype ROIC achieves an input referred noise (A-weighted) of -114.2 dBV over an audio bandwidth of 20 Hz to 20 kHz with a $136{\mu}A$ current consumption. The chip is occupied with an active area of $0.35mm^2$ and a chip area of $0.54mm^2$.

초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계 (Designing Compensators of Dual Servo System For High Precision Positioning)

  • 최현석;송치우;한창수;최태훈;이낙규;나경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF