Browse > Article
http://dx.doi.org/10.5369/JSST.2008.17.3.195

MEMS based capacitive biosensor for real time detection of bacterial growth  

Seo, Hye-Kyoung (School of Mechanical Engineering, Yonsei University)
Lim, Dae-Ho (School of Mechanical Engineering, Yonsei University)
Lim, Mi-Hwa (Department of Microbiology, College of Medicine, Yonsei University)
Kim, Jong-Baeg (School of Mechanical Engineering, Yonsei University)
Shin, Jeon-Soo (Department of Microbiology, College of Medicine, Yonsei University)
Kim, Yong-Jun (School of Mechanical Engineering, Yonsei University)
Publication Information
Journal of Sensor Science and Technology / v.17, no.3, 2008 , pp. 195-202 More about this Journal
Abstract
A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.
Keywords
impedance microbiology; real time detection of bacteria; capacitance; interdigitated microelectrode (IME);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Varshney and Y. Li, 'Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples', Biosens. Bioelectron., vol. 22, pp. 2408-2414, 2007   DOI   ScienceOn
2 K. Inque, K. Miki, K. Tamura, and R. Sakazaki, 'Evaluation of L-pyrrolidonyl peptidase paper strip test for differentiation of members of the family enterobacteriaceae, particularly salmonella spp.', J. Clin. Microbiol., vol. 34, no. 7, pp. 1811-1812, 1996
3 I. Abdel-Hamid, D. Ivnitski, P. Atanasov, and E. Wilkins, 'Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7', Biosens. Bioelectron., vol. 14, no. 3, pp. 309-316, 1999   DOI   ScienceOn
4 M. A. Yoshimasu and J. Zawistowski, 'Application of rapid dot blot immunoassay for detection of sal- monella enterica serovar enteritidis in eggs, Poultry, and other foods', Appl. Environ. Microbiol., vol. 67, no. 1, pp. 459-461, 2001   DOI   ScienceOn
5 P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Grifrm, and R. V. Tauxe, 'Food-related illness and death in the United Stated', Emerg. Infect. Dis., vol. 5, pp. 607-625, 1999   DOI   ScienceOn
6 S. J. Olsen, L. C. MacKinnon, J. S. Goulding, N. H. Bean, and L. Slutsker, 'Surveillance for foodbornedisease outbreaks -United States, 1993-1997', MMWR, vol. 49, no. ss-1, 2000
7 J. H. Jung and S. K. Lee, 'Chemical and biosensors; Design of multi-layered surface plasmon resonance sensors using optical admittance method and evolution algorithm', J. Kor. Sensors Society, vol. 14, no. 6, pp. 402-408, 2005   과학기술학회마을   DOI
8 P.A. Noble, 'Hypothetical model for monitoring microbial growth by using capacitance measurements - a minireview', J. Microbiol. Meth., vol, 37, no. 1, pp. 45-49, 1999   DOI   ScienceOn
9 M. Dahlenborg, E. Borch, and P. Radstrom, 'Development of a combined selection and enrichment pcr procedure for clostridium botulinum types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs', Appl. Environ. Microbiol., vol. 67, no. 10, pp. 4781-4788, 2001   DOI
10 H. O. Fatoyinbo, K. F. Hoettges, S. M. Reddy, and M. P. Hughes, 'An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications', Biosens. Bioelectron., vol. 23, pp. 225-232, 2007   DOI   ScienceOn
11 S. I. Kim, H. J. Lee, S. H. Park, H. S. Bhang, J. A. Lee, and S. J. Choi, 'Chemical and biosensors; QCM biosensor for the determination of haptoglobin', J. Kor. Sensors Society, vol. 16, no. 2, pp. 132- 141, 2007   과학기술학회마을   DOI
12 A. Bonanni, M.J. Esplandiu, and M. del Valle, 'Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles', Electrochim. Acta, vol. 53, pp. 4022-4029, 2008   DOI   ScienceOn
13 A. Klausegger, M. Hell, A. Berger, K. Zinober, S. Baier, N. Jones, W. Sperl, and B. Kofler, 'Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria', J. Clin. Microbiol., vol. 37, no. 2, pp. 464-466, 1999
14 B. Nguyen, F. A. Tanious, and W. D. Wilson, 'Biosensor-surface plasmon resonance :Quantitative analysis of small molecule-nucleic acid interactions', Methods, vol. 42, pp. 150-161, 2007   DOI   ScienceOn
15 J. Owicji and J. Parce, 'Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification', Biosens. Bioelectron., vol. 7, no. 4, pp. 257- 272, 1992
16 A. Ramkumar, and R. Lal, 'Silica nanoparticle tags for capacitive affinity sensors', Proc. of the 2005 IEEE Engineering in Medicine and Biology, Shanghai, China, September 1-4, 2005