• Title/Summary/Keyword: MEMS 센서

Search Result 447, Processing Time 0.026 seconds

Optimal Design of a MEMS-type Piezoelectric Microphone (MEMS 구조 압전 마이크로폰의 최적구조 설계)

  • Kwon, Min-Hyeong;Ra, Yong-Ho;Jeon, Dae-Woo;Lee, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • High-sensitivity signal-to-noise ratio (SNR) microphones are essentially required for a broad range of automatic speech recognition applications. Piezoelectric microphones have several advantages compared to conventional capacitor microphones including high stiffness and high SNR. In this study, we designed a new piezoelectric membrane structure by using the finite elements method (FEM) and an optimization technique to improve the sensitivity of the transducer, which has a high-quality AlN piezoelectric thin film. The simulation demonstrated that the sensitivity critically depends on the inner radius of the top electrode, the outer radius of the membrane, and the thickness of the piezoelectric film in the microphone. The optimized piezoelectric transducer structure showed a much higher sensitivity than that of the conventional piezoelectric transducer structure. This study provides a visible path to realize micro-scale high-sensitivity piezoelectric microphones that have a simple manufacturing process, wide range of frequency and low DC bias voltage.

Performance Improvement of Azimuth Estimation in Low Cost MEMS IMU based INS/GPS Integrated Navigation System (저가형 MEMS 관성측정장치 기반 INS/GPS 통합 항법 장치에서 방위각 추정 성능 향상)

  • Chun, Se-Bum;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Kalman filter is generally used in INS/GPS integrated navigation filter. However, the INS with low performance inertia sensor can not find accurate azimuth in initial alignment stage because sensor noise level is too large compare to Earth rotation rate, therefore the performance and stability of Kalman filter can not be guaranteed. In this paper, the extended Kalman filter and particle filter combined filter structure which can be overcome large initial azimuth error is proposed.

Study of Manual Spray Coating Method for Fabricating Flexible Cantilever (유연성 높은 캔틸레버 제작을 위한 스프레이 코팅 방법 연구)

  • Kim, Ji-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.366-369
    • /
    • 2017
  • This work presents a detailed study of several parameters on the spray coating method for fabricating a flexible cantilever. Conventionally, spin coating method have been widely used in the microelectromechanical system (MEMS) fabrication process. However, the major drawback of this method is the difficulties in protecting various topography with photoresist film, particularly when the device is manufactured in high aspect ratio. It is also a challenging process to form a small pattern in the etched area. On the other hand, the commercial spray coating systems are not advantageous from an economic perspective and the technique is also providing less efficient. In order to solve these issues, we have developed a manual spray coating system which can be efficiently used by combining the accessories available in the laboratory. The developed spray coating system consists of a spin-coater, motorized stage, a spray gun with the capable of controlling centrifugal force, injection amount, injection angle, and spray range. The major advantage of the proposed spray coating system is its reasonable fabrication cost. Secondly, the system can be easily disassembled after finishing the coating experiment. Owing to the mentioned advantages, we sincerely believe that the proposed spray coating system can be effectively used in many related applications.

Fabrication of Microstructures for Conductive Polymer Actuators Using MEMS Process (MEMS 공정을 이용한 전도성 고분자 액추에이터용 마이크로 구조물의 제작)

  • Lee, Seung-Ki;Jung, Seng-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.156-163
    • /
    • 2003
  • Polypyrrole microactuators have been fabricated by the standard surface micromachining method combined with the electropolymerization of polypyrrole. The fundamental structure to verify the feasibility of the fabrication process is polypyrrole cantilever. Based on these process, polypyrrole grippers and valves for the manipulation of the cell have been fabricated. Grippers have the structure of bone and muscle which are rigid polymers and polypyrrole, respectively. Valves have the assembled structure of channels with polypyrrole cantilevers. The proposed fabrication process and structures are expected to be used for bio-related applications, for example, the cell manipulation.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.

A Study on the Fabrication of the Lateral Accelerometer using SOG(Silicon On Glass) Process (SOG(Silicon On Glass)공정을 이용한 수평형 미소가속도계의 제작에 관한 연구)

  • Choi, Bum-Kyoo;Chang, Tae-Ha;Lee, Chang-Kil;Jung, Kyu-Dong;Kim, Jong-Pal
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.430-435
    • /
    • 2004
  • The resolution of the accelerometer, fabricated with MEMS technology is mainly affected by mechanical and electrical noise. To reduce mechanical noise, we have to increase mass of the structure part and quality factor related with the degree of vacuum packaging. On the other hand, to increase mass of the structure part, the thickness of the structure must be increased and ICP-RIE is used to fabricate the high aspect ratio structure. At this time, footing effect make the sensitivity of the accelerometer decreasing. This paper presents a hybrid SOG(Silicon On Glass) Process to fabricate a lateral silicon accelerometer with differential capacitance sensing scheme which has been designed and simulated. Using hybrid SOG Process, we could make it a real to increase the structural thickness and to prevent the footing effect by deposition of metal layer at the bottom of the structure. Moreover, we bonded glass wafer to structure wafer anodically, so we could realize the vacuum packaging at wafer level. Through this way, we could have an idea of controlling of quality factor.

A Development of Smart Sensing Device for Monitoring Abnormal Vibration of Industrial Equipment (산업 설비의 이상 진동 감지를 위한 스마트 센싱 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.361-366
    • /
    • 2017
  • The abnormal state of the main equipment across the industry is accompanied by abnormal rise of temperature, change in the vibration and noise. In this study, we developed a smart sensing module equipped with BLE, and developed a smart sensing device that can detect abnormal vibration due to its own flaws of the equipment by interfacing with an MEMS-based acceleration sensor. The smart sensing device developed in this study can be easily installed in a small space and can monitor the vibration status of the equipment in real time, and can easily inform the user of the steady state and the problem occurrence status with array LED display.

SAW Device Reader Platform Using FPGA Implementation (FPGA를 이용한 SAW Device Reader Platform 구현)

  • Jeong, Yong-Hyun;Son, Young-Tae;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2805-2810
    • /
    • 2010
  • The Passive Device called SAW Device of the ID Tag or a small sensor that can replace all of MEMS technology Micro Device. When using SAW Device will be able to replace that sensor control the power needed or separate space. Enlarge the scope of this advantage to use as a platform for various SAW Device is required. However, the current SAW Sensor development has many, but SAW Sensor that can leverage the platform's development is sketchy. Therefore, this paper implements SAW Reader can be measured in SAW Device Using an FPGA more simple and efficient Reader platform.

Development of the Compact Smart Device for Industrial IoT (산업용 IoT를 위한 초소형 스마트 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.751-756
    • /
    • 2018
  • In smart factories and industrial IoT, all facilities in a factory are monitored over the Internet, thereby facility can reduce the downtime and increase the availiability by preventive maintenance before it breaks down. The abnormal conditions of the major facilities in the plant are caused by abnormal temperature rise, vibration, and variations in noise. Consequently, it is critical to develop a very small smart device that is easily installed in a small space to enable real-time monitoring of the vibration status of the facility. In this study, smart devices were developed for smart factory fault prediction and robustness management using ultra small micro-controllers with WiFi capabilities and MEMS acceleration sensors.