• Title/Summary/Keyword: MBL

Search Result 719, Processing Time 0.025 seconds

Screening of Antimicrobial Activity of Marine-Derived Biomaterials against Fish Pathogens (해양 유래 미생물을 이용한 어류질병세균에 대한 항균활성 탐색)

  • Kim, Dong-Hwi;Park, So-Hyun;Kim, Ji-Hyun;Lee, Hae-Ri;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • The prevalence of infections due to pathogenic bacteria such as Edwardsiella tarda, Streptococcus parauberis, and Photobacterium phosphoreum in fish farms in Jeju Island and their management by marine-derived biomaterials was studied. In this study, we isolated eight spices type of marine-derived biomaterials from four sea areas of Jeju Island. An antibiotic disc susceptibility test confirmed that the isolated marine-derived biomaterials showed weak resistance only to oxytetracycline and penicillin and sensitivity to the other antibiotics tested, and antimicrobial activity against fish pathogens with the inhibitory zone of 22 mm, 18 mm, and 19 mm for MD-02, MD-04, and MD-06 against E. tarda strains, respectively, and 19 mm, 22 mm, 30 mm, and 29 mm for MD-01, MD-02, MD-04, and MD-06 against S. parauberis strains, respectively, while all the marine-derived biomaterials showed antibacterial activity against P. phosphoreum. Among the eight biomaterials selected, Bacillus subtilis MD-02 displayed the greatest antibacterial activity against the three tested fish pathogens and also displayed susceptibility to antibiotics. The growth of Bacillus subtilis MD-02 was greatest with the carbon source, dextrine; nitrogen source, peptone; and mineral source, $MgSO_4{\cdot}7H_2O$. Hence, the present study confirmed that the isolate B. subtilis MD-02 from Jeju Island could be a potential antimicrobial agent against fish pathogens and a potential pharmacotherapeutic agent.

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Effect of Electrolyzed Water and Hot-Air-Drying with UV for the Reduction of Microbial Populations of Undaria pinnatifida (전해수 수세, 열풍건조 및 자외선 조사에 의한 미역의 미생물 감소 효과)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Kim, Bo-Ram;Ahn, Na-Kyung;Choi, Yeon-Uk;Cho, Young-Je;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This study was conducted to investigate the effects of electrolyzed water (EW) and hot-air-drying with ultraviolet light (UV) to reduce coliform bacteria of Undaria pinnatifida (UP). The UP was washed in the order of 15% EW, tap water (TW), and distilled water (DW) under following conditions: 15% EW for 10 min (washing: 1 time), TW for 1 min, and DW for 10 min (washing: 5 times). Viable cells, coliform, and mold counts were at 102-103 CFU/g in untreated samples. After EW treatment, viable cells, coliform, and molds were not detected in whole samples or on the surface of UP. But, after hot-air-drying at 48°C for 48 h, the number of viable cells, coliform, and molds were 101-105 CFU/g. After hot-air-drying at 48°C for 48 h with UV (12-48 h), viable cells, coliform, and molds were not detected in whole samples or on the surface of UP. In respect of color value, there were no significant changes. In sensory evaluation, the UP with hot-air-drying with UV (12 h) had the highest score in overall preference among UV treatment groups. These results suggest that the treatments at 15% EW for 10 min and hot-air-drying at 48°C for 48 h with UV (12 h) were effective to reduce coliform bacteria of the dried Undaria pinnatifida.

Effect of Electrolyzed Water for Reducing Coliform Bacteria on Undaria pinnatifida (전해수 처리에 의한 미역의 대장균군 억제효과)

  • Kim, Bo-Ram;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Bark, Si-Woo;Pak, Won-Min;Ahn, Na-Kyung;Choi, Yeon-Uk;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • This study was conducted to investigate the bactericidal activity of electrolyzed water (EW) against coliform bacteria on Undaria pinnatifida (UP). The UP was washed with 15% EW, tap water (TW), and distilled water in the following order: 15% EW for 5 and 10 min (1st to 3rd washing process), TW for 1 min, and distilled water for 10 min (3rd to 5th washing process). The washing processes using 15% EW and distilled water occurred a total of 6 times. The number of viable cells, coliform bacteria, and molds in the untreated sample were in the range of 101 to 103 CFU/g. In the case of the UP with 15% EW for 5 min sample, the viable cell counts were reduced by 1-2 log cycles as compared with the untreated sample. The coliform bacteria were not detected except after the 1st EW washing process. Mold counts were not detected in all treatments. In the UP with 15% EW for 10 min sample, the viable cells, coliform bacteria, and mold counts were not detected. In color, there were no significant differences among samples. In sensory evaluation, the UP treated with 15% EW for 10 min (first washing process) got higher scores for color, aroma, and taste than others. These results suggest that the treatment of 15% EW for 10 min is the most effective way to reduce coliform bacteria of the UP.

Biochemical Characterization of a Novel Thermostable Esterase from the Metagenome of Dokdo Islets Marine Sediment (독도 심해토 메타게놈 유래 신규 내열성 에스테라아제의 생화학적 특성규명)

  • Lee, Chang-Muk;Seo, Sohyeon;Kim, Su-Yeon;Song, Jaeeun;Sim, Joon-Soo;Hahn, Bum-Soo;Kim, Dong-Hern;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • A functional screen of 60,672 fosmid metagenomic clones amplified from marine sediment obtained from the Dokdo islets in Korea identified the gene EstES1, whose product, EstES1, displayed lipolytic properties on tributyrin-supplemented media. EstES1 is a 576 amino acid protein with a predicted molecular weight of 59.4 kDa including 37 N-terminal leader amino acids. EstES1 exhibited the highest sequence similarity (44%) to a carboxylesterase found in Haliangium ochraceum DSM14365. Phylogenetic analysis indicated that EstES1 belongs to a currently uncharacterized family of lipases. Within the conserved domain, EstES1 retains the catalytic triad that consists of the consensus penta-peptide motif, GESAG. EstES1 demonstrated a broad substrate specificity toward the long acyl group of ethyl esters (C2-C12), and its optimal activity was recorded toward p-Nitrophenyl butyrate (C4) at pH 9.0 and $40^{\circ}C$ (specific activity of 255.4 U/mg). The enzyme remained stable in the ranges of $60-65^{\circ}C$ and pH 9.0-10.5 and in the presence of methanol, ethanol, isopropanol, and dimethyl sulfoxide. Therefore, EstES1 has potential for use in industrial applications involving high temperature, organic solvents, and/or alkaline conditions.

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Dietary effect of Bacillus subtilis MD-02 on Innate Immune Response and Disease Resistance in Olive Flounder, Paralichthys olivaceus (넙치(Paralichthys olivaceus)의 비특이적 면역반응 및 병 저항성에 대한 Bacillus subtilis MD-02의 효과)

  • Kim, Dong-Hwi;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.132-138
    • /
    • 2019
  • Among several marine-derived microorganisms isolated from the coast of Jeju Island that had antimicrobial activity against fish disease pathogens, Bacillus subtilis MD-02 was tested for its dietary effect on the innate immune response and disease resistance of olive flounder. Strain MD-02 was fed to the olive flounder at a concentration of $1.2{\times}10^4$, $1.2{\times}10^6$, or $1.2{\times}10^8CFU/100g$, respectively. Consequently, the hematocrit was higher in these three groups than that in the control group at 4 weeks, and the aspartate aminotransferase and alanine aminotransferase levels were decreased in the $1.2{\times}10^8$ and $1.2{\times}10^4CFU/100$ groups compared with the control group levels. The amylase activity and total protein were significantly increased in the $1.2{\times}10^4CFU/100g$ group at 3 weeks. The innate immune response, determined from the lysozyme and macrophage activities, was higher in the $1.2{\times}10^8CFU/100g$ group than in the control group. In addition, treatment of the olive flounders with Streptococcus parauberis at $1.2{\times}10^6CFU/ml$ confirmed the mortality rate, which was 100% in the control group and 40-60% in the groups fed B. subtilis MD-02, indicating that the fish had resistance to fish disease pathogens. Therefore, it was confirmed that when fed MD-02, olive flounder builds an innate immune response and acquires resistance to fish disease pathogens, indicating that B. subtilis MD-02 can be developed as a beneficial feed additive.

A Study on the Whitening Effect of Erigeron annuus (L.) Pers. Ethanol Extract on Melanoma Cell (B16F10) (멜라노마 세포(B16F10)에서의 개망초 추출물을 이용한 미백효과에 관한 연구)

  • Joo, Da-Hye;Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.148-157
    • /
    • 2019
  • A 70% ethanol extract of Erigeron annuus (L.) Pers. was investigated for its whitening activity for application as a functional ingredient in cosmetic products. At the E. annuus extract concentration of $100{\mu}g/ml$, the electron-donating ability was found to be 67.83%, the tyrosinase inhibitory effect (related to skin-whitening) was 69%, the elastase inhibitory effect (related to skin-wrinkling) was 69%, and the astringent effect was 80%. The $ABTS^+$ radical-scavenging ability was 87% at the $500{\mu}g/ml$ concentration. In the cell viability test measured on melanoma cells, 96% of the cells treated with $100{\mu}g/ml$ of the extract were viable. According to the western blot results, the protein expression of the microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 was decreased by 60.22%, 47.83%, 54.79%, and 67.88%, respectively, at the extract concentration of $100{\mu}g/ml$. The protein expression of phosphorylated extracellular signal regulated kinase (p-ERK) and phosphorylated cAMP response element-binding protein (p-CREB) was decreased with increasing concentrations of the extract. Reverse transcription-polymerase chain reaction of the extract showed that the mRNA expression of MITF, tyrosinase, TRP-1, and TRP-2 was decreased by 86.51%, 85.22%, 74.26%, and 66.66%, respectively, at $100{\mu}g/ml$ extract concentration. The findings suggest that the 70% ethanol extract from E. annuus (L.) Pers. has potential as a cosmeceutical ingredient with whitening effect.

Complete Genome Sequence and Antimicrobial Activities of Bacillus velezensis MV2 Isolated from a Malva verticillate Leaf (아욱 잎에서 분리한 Bacillus velezensis MV2의 유전체 염기서열 분석과 항균활성능 연구)

  • Lee, Hyeonju;Jo, Eunhye;Kim, Jihye;Moon, Keumok;Kim, Min Ji;Shin, Jae-Ho;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.111-119
    • /
    • 2021
  • A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known to produce diverse antimicrobial compounds including bacteriocins, polyketides, and non-ribosomal peptides. Antimicrobial compounds in the B. velezensis MV2 were extracted from culture supernatants using hydrophobic interaction chromatography. The crude extracts showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria; however, they were more effective against gram-positive bacteria. The extracts also showed antifungal activity against phytopathogenic fungi such as Fusarium fujikuroi and F. graminearum. In time-kill assays, these antimicrobial compounds showed bactericidal activity against Bacillus cereus, used as indicator strain. To predict the type of antimicrobial compounds produced by this strain, we used the antiSMASH algorithm. Forty-seven secondary metabolites were predicted to be synthesized in MV2, and among them, fourteen were identified with a similarity of 80% or more with those previously identified. Based on the antimicrobial properties, the antimicrobial compounds may be nonribosomal peptides or polyketides. These compounds possess the potential to be used as biopesticides in the food and agricultural industry as an alternative to antibiotics.