Browse > Article
http://dx.doi.org/10.4014/mbl.1912.12013

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules  

Park, Mirye (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Kim, Z-Hun (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Nam, Seung Won (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Lee, Sang Deuk (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Yun, Suk Min (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Kwon, Dae Ryul (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Lee, Chang Soo (Algae Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.2, 2020 , pp. 205-214 More about this Journal
Abstract
Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.
Keywords
Cyanobacteria; cryopreservation; microcapsule; Trichormus variabilis; mreB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu B, Yang G, Zhao W, Zhang Y, Zhao J. 2007. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63: 1640-1652.   DOI
2 Purohit GK, Mahanty A, Mohanty BP, Mohanty S. 2016. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of gene expression in the murrel channa striatus under high-temperature stress. Fish Physiol. Biochem. 42: 125-135.   DOI
3 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $22^{-{\Delta}{\Delta}CT}$ Method. Methods. 25: 402-408.   DOI
4 Garrido-Cardenas JA, Han X, Alonso DL, Garcia-Maroto F. 2019. Evaluation and optimization of a methodology for the long-term cryogenic storage of Tetradesmus obliquus at $-80^{\circ}C$. Appl. Microbiol. Biotechnol. 103: 2381-2390.   DOI
5 Mourelle M, Gomez C, Legido J. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4: 46.   DOI
6 Vijayakumar S, Menakha M. 2015. Pharmaceutical applications of cyanobacteria-A review. J. Acute Med. 5: 15-23.   DOI
7 Black K, Buikema WJ, Haselkorn R. 1995. The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 177: 6440-6448.   DOI
8 Lukesova A, Hrouzek P, Harding K, Benson EE, Day JG. 2008. Deployment of the encapsulation/dehydration protocol to cryopreserve diverse microalgae held at the Institute of Soil Biology, Academy of Sciences of the Czech Republic. Cryoletters 29: 21-26.
9 Sakr S, Jeanjean R, Zhang CC, Arcondeguy T. 2006. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 188: 1396-1404.   DOI
10 Braune W. 1980. Structural aspects of aknete germination in the cyanobacterium Anabaena variabilis. Arch Microbiol. 126: 257-261.   DOI
11 Bartram J, Chorus I. 1999. Toxic cyanobacteria in water - A guide to their public health consequences, monitoring and management. In: Redman M, Crompton TR, Welch EB, Bau J, Henriques JD, Oliviera Raposo de J, Lobo Ferreira JP, Best G, Niemirycz E, Bogacka T, Lester JN, Birkett JW, Gleeson C, Gray N, Pereira LS, Gowing J, Bardolet R, Kay B, Smith LED, Franks T, Howsam P, Carter RC, Helmer R, Hespanhol I, Kimstach V, Meybeck M, Baroudy E, Chapman D, Bartram J, Balance R, Kay B, Howsan PE & FN Spon, pp. 416. London.
12 Wang B, Zhang E, Gu Y, Ning S, Wang Q, Zhou J. 2011. Cryopreservation of brown algae gametophytes of undaria pinnatifida by encapsulation-vitrification. Aquaculture 317: 89-93.   DOI
13 Hallegraeff GM. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99.   DOI
14 Wood SA, Rhodes LL, Adams SL, Adamson JE, Smith KF, Smith JF, et al. 2008. Maintenance of cyanotoxin production by cryopreserved cyanobacteria in the New Zealand culture collection. New Zeal J. Mar. Fresh 42: 277-283.   DOI
15 Rastoll MJ, Ouahid Y, Martín-Gordillo F, Ramos V, Vasconcelos V, Campo FFd. 2013. The development of a cryopreservation method suitable for a large cyanobacteria collection. J. Appl. Phycol. 25: 1483-1493.   DOI
16 Day JG, Benson EE, Harding K, Knowles B, Idowu M, Bremner D, et al. 2005. Cryopreservation and conservation of microalgae: the development of a Pan-European scientific and biotechnological resource (the COBRA project). Cryo Letters 26: 231-238.
17 Potts M. 1994. Desccation tolerance of prokaryotes. Microbiol Mol. Biol. Rev. 58: 755-805.
18 Hagen C, Siegmund S, Braune W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37: 217-226.   DOI
19 Chekanov K, Vasilieva S, Solovchenko A, Lobakova E. 2018. Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures. Photosynthetica 56: 1268-1277.   DOI
20 Singh SM, Elster J. 2007. Cyanobacteria in antarctic lake environments. Algae and cyanobacteria in extreme environments. pp. 303-320. Ed. Springer, Dordrecht.
21 Bewley JD. 1979. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol. 30: 195-238.   DOI
22 Singh SP, Montgomery BL. 2011. Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 19: 278-285.   DOI
23 Gaballah A, Kloeckner A, Otten C, Sahl HG, Henrichfreise B. 2011. Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS One 6: e25129.   DOI
24 Benson EE. 2008. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. CRC Crit. Rev. Plant Sci. 27: 141-219.   DOI
25 Day JG. 2007. Cryopreservation of microalgae and cyanobacteria. pp. 141-151. Cryopreservation and Freeze-Drying Protocols. Humana Press, Totowa, NJ.
26 Cavalcante SC, Freitas RS, Vidal MSM, Dantas KC, Levi JE, Martins JEC. 2007. Evaluation of phenotypic and genotypic alterations induced by long periods of subculturing of cryptococcus neoformans strains. Mem. Inst. Oswaldo Cruz 102: 41-47.   DOI
27 Romo S, Becares E. 1992. Preservation of filamentous cyanobacteria cultures under low temperatures. J. Microbiol. Methods. 16: 85-89.   DOI
28 Harding K, Day JG, Lorenz M, Timmermann H, Friedl T, Bremner DH, et al. 2004. Introducing the concept and application of vitrification for the cryo-conservation of algae-a mini-review. Nova Hedwigia. 79: 207-226.   DOI
29 Day JG. 2004. Cryopreservation: fundamentals, mechanisms of damage on freezing/thawing and application in culture collections. Nova Hedwigia. 79: 191-205.   DOI
30 Brand JJ, Diller KR. 2004. Application and theory of algal cryopreservation. Nova Hedwigia. 79: 175-189.   DOI
31 Day JG, Fleck RA. 2015. Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnol. 1: 1-11.
32 Gwo JC, Chiu JY, Chou CC, Cheng HY. 2005. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50: 338-343.   DOI
33 Mori F, Erata M, Watanabe MM. 2002. Cryopreservation of cyanobacteria and green algae [Chlorophyceae] in the NIES-collection [Japan]. Microbiology and Culture Collections (Japan). 18: 45-55.
34 Sakai A, Engelmann F. 2007. Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryoletters 28: 151-172.
35 Holm-Hansen O. 1963. Viability of blue-green and green algae after freezing. Physio plant. 16: 530-540.   DOI
36 Morris GJ. 1976. The cryopreservation of Chlorella 1. interactions of rate of cooling, protective additive and warming rate. Arch Microbiol. 107: 57-62.   DOI
37 Paulet F, Engelmann F, Glaszmann J-C. 1993. Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep. 12: 525-529.   DOI
38 Kumari N, Gupta MK, Singh RK. 2016. Open encapsulation-vitrification for cryopreservation of algae. Cryobiology 73: 232-239.   DOI
39 Park H-K. 2006. Long-term Preservation of bloom-forming cyanobacteria by cryopreservation. Algae 21: 125-131.   DOI
40 Brock TD. 1973. Evolutionary and ecological aspects of the cyanophytes. Botanical Monographs. 9: 487-500.
41 Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66: 1-20.   DOI
42 Fay P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Mol. Biol. Rev. 56: 340-373.
43 Al-Tebrineh J, Mihali TK, Pomati F, Neilan BA. 2010. Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Appl. Environ. Microbiol. 76: 7836-7842.   DOI
44 Day JG, DeVille MM. 1995. Cryopreservation of algae. in: Day J.G., Pennington M.W. (eds) Cryopreservation and Freeze-Drying Protocols., pp. 141-151, Methods in Molecular $Biology^{TM}$, Ed. Humana Press, Totowa, NJ.
45 Nam SW, Shin W. 2016. Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications. Algae 31: 117-128.   DOI
46 Popova A, Kemp R. 2007. Effects of surfactants on the ultrastructural organization of the phytoplankton, Chlamydomonas reinhardtii and Anabaena cylindrica. Fund Appl. Limnol. 169: 131-136.   DOI
47 Milledge JJ. 2010. Commercial application of microalgae other than as biofuels: a brief review. Rev. Environ. Sci. Biotechnol. 10: 31-41.