Browse > Article
http://dx.doi.org/10.4014/mbl.2008.08010

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus  

Kim, Soo Yeon (College of Biomedical Science, Kangwon National University)
Chun, Gie-Taek (College of Biomedical Science, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.3, 2020 , pp. 344-357 More about this Journal
Abstract
Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.
Keywords
Hyaluronic acid; Streptococcus zooepidemicus; statistical medium optimization; agitation system; scale-up of bioreactor cultures;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Duan XJ, Yang L, Zhang X, Tan WS. 2008. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol Biotechnol. 18: 718-724.
2 Zhang X, Duan XJ, Tan WS. 2010. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. Food Chem. 119: 1643-1646.   DOI
3 Rhaese HJ, Boetk NK. 1973. The molecular basis of mutagenesis by methyl and ethyl methanesulfonates Eur. J. Biochem. 32: 166-172.   DOI
4 Shukla V, Parasu Veera U, Kulkarni P, Pandit A. 2001. Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor. Biochem. Eng. J. 8: 19-29.   DOI
5 Grand view research. Hyaluronic Acid Market Size Worth $16.6 Billion By 2027 I CAGR: 8.1%. Available from https://www.grandviewresearch.com/press-release/global-hyaluronic-acidmarket (Accessed on Aug. 10, 2020).
6 Cheng F, Gong Q, Yu H, Stephanopoulos G. 2016. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11: 574-584.   DOI
7 Kogan G, Soltes L, Stern R, Gemeiner P. 2007. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25.   DOI
8 Song HL, Kwon T, Lee JW. 2016. The global market trend and perspectives of hyaluronic acid. J. Chitin Chitosan. 21: 1-5.   DOI
9 Prasad SB, Jayaraman G, Ramachandran KB. 2010. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis Appl. Microbiol. Biotechnol. 86: 273-283.   DOI
10 Izawa N, Serata M, Sone T, Omasa T, Ohtake H. 2011. Hyaluronic acid production by recombinant Streptococcus thermophilus. J. Biosci. Bioeng. 111: 665-670.   DOI
11 Mao Z, Shin H, Chen R. 2009. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84: 63-69.   DOI
12 Chen WY, Marcellin E, Hung J, Nielsen LK. 2009. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J. Biol. Chem. 284: 18007-18014.   DOI
13 Heo BY. 2013. Strain Improvement and Statistical Medium Optimization for Enhanced Production of Hyaluronic Acid by Streptococcus zooepidemicus. M.S. Kangwon National University. Republic of Korea.
14 Alves FG, Filho FM, De Medeiros Burkert JF, Kalil SJ. 2010. Maximization of ${\beta}$-galactosidase production: A simultaneous investigation of agitation and aeration effects. Appl. Biochem. Biotechnol. 160: 1528-1539.   DOI
15 Herbst H, Schumpe A, Deckwer W. 1992. Xanthan production in stirred tank fermenters: Oxygen transfer and scale-up. Chem. Eng. Technol. 15: 425-434.   DOI
16 Mehmood N, Olmos E, Marchal P, Goergen J, Delaunay S. 2010. Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa. Process Biochem. 45: 1779-1786.   DOI
17 Bodizs L, Titica M, Faria N, Srinivasan B, Dochain D, Bonvin D. 2007. Oxygen control for an industrial pilot-scale fed-batch filamentous fungal fermentation. J. Process Control. 17: 595-606.   DOI
18 Roubos JA, Krabben P, Luiten RG, Verbruggen HB, Heijnen J. 2001. A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol. Prog. 17: 336-347.   DOI
19 Prasad SB, Ramachandran KB, Jayaraman G. 2012. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Appl. Microbiol. Biotechnol. 94: 1593-1607.   DOI
20 Hasegawa S, Nagatsuru M, Shibutani M, Yamamoto S, Hasebe S. 1999. Productivity of concentrated hyaluronic acid using a $Maxblend^{(R)}$ fermentor. J. Biosci. Bioeng. 88: 68-71.   DOI
21 Chen SJ, Chen JL, Huang WC, Chen HL. 2009. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J. Chem. Eng. 26: 428-432.   DOI
22 Lai ZW, Rahim RA, Ariff A, Mohamad R. 2011. Medium formulation and impeller design on the biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Afr. J. Microbiol. Res. 5: 2114-2123.
23 Armstrong DC, Johns MR. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63: 2759-2764.   DOI
24 Armstrong DC, Cooney MJ, Johns MR. 1997. Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 47: 309-312.   DOI
25 Duan XJ, Niu HX, Tan WS, Zhang X. 2009. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 19: 299-306.   DOI
26 Shin WS, Lee D, Kim S, Jeong YS, Chun GT. 2013. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 23: 1445-1453.   DOI
27 Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334.   DOI
28 Kim SJ, Park SY, Kim CW. 2006. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 16: 1849-1855.
29 Lai ZW, Rahim RA, Ariff AB, Mohamad R. 2012. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. J. Biosci. Bioeng. 114: 286-291.   DOI
30 Blank LM, Hugenholtz P, Nielsen LK. 2008. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic Streptococci. J. Mol. Evol. 67: 13-22.   DOI
31 Cleary PP, Larkin A. 1979. Hyaluronic acid capsule: strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097.   DOI
32 Shah MV, Badle SS, Ramachandran KB. 2013. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem. Eng. J. 80: 53-60.   DOI
33 Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 3: 37-58.   DOI
34 Condon S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 3: 269-280.   DOI