• Title/Summary/Keyword: MAP Decoder

Search Result 88, Processing Time 0.034 seconds

Implementation of Channel Coding System using Viterbi Decoder of Pipeline-based Multi-Window (파이프라인 기반 다중윈도방식의 비터비 디코더를 이용한 채널 코딩 시스템의 구현)

  • Seo Young-Ho;Kim Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.587-594
    • /
    • 2005
  • In the paper, after we propose a viterbi decoder which has multiple buffering and parallel processing decoding scheme through expanding time-divided imput signal, and map a FPGA, we implement a channel coding system together with PC-based software. Continuous input signal is buffered as order of decoding length and is parallel decoded using a high speed cell for viterbi decoding. Output data rate increases linearly with the cell formed the viterbi decoder, and flexible operation can be satisfied by programming controller and modifying input buffer. The tell for viterbi decoder consists of HD block for calculating hamming distance, CM block for calculating value in each state, TB block for trace-back operation, and LIFO. The implemented cell of viterbi decoder used 351 LAB(Logic Arrary Block) and stably operated in maximum 139MHz in APEX20KC EP20K600CB652-7 FPGA of ALTERA. The whole viterbi decoder including viterbi decoding cells, input/output buffers, and a controller occupied the hardware resource of $23\%$ and has the output data rate of 1Gbps.

An efficient method for Turbo Decoder design using Block Combining (블록 통합을 사용한 효율적 터보 디코더 설계)

  • 서종현;윤상훈;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.537-540
    • /
    • 2003
  • 본 논문에서는 터보 디코더에 사용되는 MAP 알고리즘의 저전력 구조를 제안한다. 터보 디코더 알고리즘 중 하나인 MAP 알고리즘은 많은 메모리 사이즈와 복잡한 연산량을 가진다. 본 논문에서는 메모리 사이즈를 줄이기 위하여 두 번의 상태 천이(branch metric) 과정을 하나로 통합 계산하는 방식을 제안하였다. 제안된 방식으로 구한 상태 천이 값을 이용해서 FSM(Forward State Metric)값을 구하면 BM(branch metric)값이 다음 상태의 FSM에 포함되어지므로 APP(A Posteriori Probability)를 계산할 때 BM부분이 빠져 LLR(Log Likelihood Ratio)의 연산량을 줄일 수 있다. 실험결과 기존의 MAP 알고리즘과 동일 성능을 가지면서 MAP 알고리즘을 개선한 Pietrobon 알고리즘을 log-MAP 알고리즘에 적용하여 LLR 연산량을 비교했을 때 덧셈 연산을 반으로 줄일 수 있음을 확인하였다.

  • PDF

A Study on Iterative MAP-Based Decoding of Turbo Code in the Mobile Communication System (이동통신 시스템에서 MAP기반 터보 부호의 복호에 관한 연구)

  • 박노진;강철호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.62-67
    • /
    • 2001
  • In the recent mobile communication systems, the performance of Turbo Code using the error correction coding depends on the interleaver influencing the free distance determination and the recursive decoding algorithms that is executed in the turbo decoder. However, performance depends on the interleaver depth that need a large time delay over the reception process. Moreover, Turbo Code has been known as the robust ending method with the confidence over the fading channel. The International Telecommunication Union(ITU) has recently adopted as the standardization of the channel coding over the third generation mobile communications such as IMT-2000. Therefore, in this paper, we proposed of the method to improve the conventional performance with the parallel concatenated 4-New Turbo Decoder using MAP a1gorithm in spite of complexity increasement. In the real-time video and video service over the third generation mobile communications, the performance of the proposed method was analyzed by the reduced decoding delay using the variable decoding method by computer simulation over AWGN and fading channels.

  • PDF

Iterative V-BLAST Decoding Algorithm in the AMC System with a STD Scheme

  • Lee, Keun-Hong;Ryoo, Sang-Jin;Kim, Seo-Gyun;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we propose and analyze the AMC (Adaptive Modulation and Coding) system with efficient turbo coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique. The proposed algorithm adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC system using the conventional turbo coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In addition, we apply a STD (Selection Transmit Diversity) scheme to the systems for better performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the entire SNR range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm.

A Design of Parallel Turbo Decoder based on Double Flow Method Using Even-Odd Cross Mapping (짝·홀 교차 사상을 이용한 Double Flow 기법 기반 병렬 터보 복호기 설계)

  • Jwa, Yu-Cheol;Rim, Chong-Suck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.36-46
    • /
    • 2017
  • The turbo code, an error correction code, needs a long decoding time since the same decoding process must be repeated several times in order to obtain a good BER performance. Thus, parallel processing may be used to reduce the decoding time, in which case there may be a memory contention that requires additional buffers. The QPP interleaving has been proposed to avoid such case, but there is still a possibility of memory contention when a decoder is constructed using the so-called double flow technique. In this paper, we propose an even-odd cross mapping technique to avoid memory conflicts even in decoding using the double-flow technique. This method uses the address generation characteristic of the QPP interleaving and can be used to implement the interleaving circuit between the decoding blocks and the LLR memory blocks. When the decoder implemented by applying the double flow and the proposed methods is compared with the decoder by the conventional MDF techniques, the decoding time is reduced by up to 32% with the total area increase by 8%.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Iterative Turbo Decoding Using Three Cascade MAP Decoder (3개의 직렬 MAP 복호기를 이용한 반복 터보 복호화기)

  • 김동원;이호웅;강철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.6B
    • /
    • pp.709-716
    • /
    • 2001
  • 반복 복호 알고리듬에 의해 복호화된 터보 코드는 가산성 백색 가우시안 잡음(AWGN) 채널 환경에서 이론적으로 Shannon의 한계에 근접한 뛰어난 코딩 이득을 나타내는 것으로 보여지고 있다. 그러나, 터보 코드의 성능은 터보 부호화기에서 프레임의 크기 즉, 인터리버의 크기에 의존한다. IMT-2000과 같은 이동 통신 채널 환경에서 음성을 전송하는 경우에는 터보 코드의 프레임 크기는 매우 작다. 그리고, 그것은 터보 코드의 성능을 떨어뜨리는 직접적인 원인이 된다. 본 논문에서는 차세대 이동 통신 시스템에서 프레임 크기가 작은 음성 프레임을 이용하여 터보 코드의 성능을 검증하며, 작은 프레임 크기에 알맞은 3개의 직렬 MAP(Maximum A Posteriori probability) 복호기를 이용한 반복 복호의 터보 코드를 제안하고 부호율 1/3, 구속장의 길이 3 또는 4, 프레임 크기 24, 192 비트에 대하여 컴퓨터 모의실험을 통해 터보 코드의 성능을 분석한다.

  • PDF

An Implementation of Turbo -Code Decoder using Posteriori Probability Optimization (사후확률 최적화를 이용한 터보코드 복호기 구현)

  • Noh Jin-Soo;Rhee Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.73-79
    • /
    • 2006
  • Due to the powerful correcting performance, turbo codes have been adopted in many communication standards such as W-CDMA(Wideband Code Division Multiple Access), CDMA2000, etc., and implemented by hardware in many kind of fields. Although several hardware structures and improved algorithm have been proposed, these problems such as hardware area, operating speed and power consumption are still a major issue to be solved in practical implementations. In this paper, we designed the turbo-code decoder using MAX -SCALE operation derived from the posterior probability optimization. The proposed circuit has been measured their performance on Matlab and MaxPlusII and implemented on the FPGA As a result, when implementing the proposed algorithm on the FPGA, this circuit only occupies 616 logic elements. And comparing the performance with the MAP(Maxirnum a Posteriori) decoding algorithm, the operating speed was increased by about 40%(56.48MHz) and BER(Bit Error Rate) was increased by 6.12.

A Study on Iterative MAP-Based Turbo Code over CDMA Channels (CDMA 채널 환경에서의 MAP 기반 터보 부호에 관한 연구)

  • 박노진;강철호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.13-16
    • /
    • 2000
  • In the recent mobile communication systems, the performance of Turbo Code using the error correction coding depends on the interleaver influencing the free distance determination and the recursive decoding algorithms that is executed in the turbo decoder. However, performance depends on the interleaver depth that need great many delay over the reception process. Moreover, Turbo Code has been known as the robust coding methods with the confidence over the fading channel. The International Telecommunication Union(ITU) has recently adopted as the standardization of the channel coding over the third generation mobile communications the same as IMT-2000. Therefore, in this paper, we proposed of that has the better performance than existing Turbo Decoder that has the parallel concatenated four-step structure using MAP algorithm. In the real-time voice and video service over the third generation mobile communications, the performance of the proposed method was analyzed by the reduced decoding delay using the variable decoding method by computer simulation over AWGN and lading channels.

  • PDF

Performance Analysis of the Optimal Turbo Coded V-BLAST technique in Adaptive Modulation System (적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법의 성능 분석)

  • Lee, Kyung-Hwan;Choi, Kwang-Wook;Ryoo, Sang-Jin;Kang, Min-Goo;Hong, Dae-Ki;You, Cheol-Woo;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.385-391
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding to use as a priori probability in two decoding procedures of V-BLAST: ordering and slicing. Also, comparing with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. As a result of simulation, in the Adaptive Modulation systems with several Turbo Coded V-BLAST techniques, the optimal Turbo Coded V-BLAST technique has higher throughput gain than the conventional Turbo Coded V-BLAST technique. Especially, the results show that the proposed scheme achieves the gain of 1.5 dB SNR compared to the conventional system at 2.5 Mbps throughput.