• Title/Summary/Keyword: MALDI-TOF MS

Search Result 280, Processing Time 0.026 seconds

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches (질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석)

  • Hwang, Cheol-hwan;Park, Han-Gyu;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

The MALDI-TOF MS determination of yeast proteins producing $H_2S$ (MALDI-TOF MS를 이용한 효모에서의 황화수소 생성 단백질의 동정)

  • Cho, Hyun-Nam;Fan, Lu-An;Yoo, Dong-Chan;Yang, Seun-Ah;Lee, In-Seon;Kim, Jae-Hyung;Baek, Hyo-Hyun;Jhee, Kwang-Hwan
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.425-430
    • /
    • 2008
  • Hydrogen sulfide ($H_2S$) is a by-product of metabolism of amino acids including sulfur and alcoholic fermentation, it is generally thought of in terms of a poisonous gas. Though $H_2S$ can have a negative impact on the perceived quality of fermented drinks due to an undesirable aroma, it plays prominent roles as a neuromodulator in the mammalian brain as well as a smooth muscle relaxant. Nowadays studies on the proteins which produce $H_2S$ are carried out in various fields such as structure, function, and metabolism. Here we propose to develop a simple and rapid $H_2S$ forming assay method, which will lead to speed up preparing the $H_2S$ forming proteins for identification by MALDI-TOF MS analysis. We detected three kinds of proteins which produce $H_2S$ in the crude extract of Saccharomyces cerevisiae. Those proteins were cystathionie $\beta$-synthase, O-acetylserine sulfhydrylase, and cystathionine $\gamma$-lyase.

High-Throughput Screening Technique for Microbiome using MALDI-TOF Mass Spectrometry: A Review

  • Mojumdar, Abhik;Yoo, Hee-Jin;Kim, Duck-Hyun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.106-114
    • /
    • 2022
  • A rapid and reliable approach to the identification of microorganisms is a critical requirement for large-scale culturomics analysis. MALDI-TOF MS is a suitable technique that can be a better alternative to conventional biochemical and gene sequencing methods as it is economical both in terms of cost and labor. In this review, the applications of MALDI-TOF MS for the comprehensive identification of microorganisms and bacterial strain typing for culturomics-based approaches for various environmental studies including bioremediation, plant sciences, agriculture and food microbiology have been widely explored. However, the restriction of this technique is attributed to insufficient coverage of the mass spectral database. To improve the applications of this technique for the identification of novel isolates, the spectral database should be updated with the peptide mass fingerprint (PMF) of type strains with not only microbes with clinical relevance but also from various environmental sources. Further, the development of enhanced sample processing methods and new algorithms for automation and de-replication of isolates will increase its application in microbial ecology studies.

Proteomics 기법을 이용한 복제태반 분석

  • 김홍래;이혜란;강재구;윤종택;성한우;정진관;조민래;박창식;진동일
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.238-238
    • /
    • 2004
  • 세포 내에서 발현되고 있는 protein들의 양상을 분석하기 위한 기법으로 최근 proteomics에 기초하여 2차 전기영동과 MALDI-TOF MS에 의한 protein 분석방법이 개발되었는데, 특정 조직에 또는 특정 발생시기에 특이적으로 발현되는 protein의 발현양과 발현양상을 비교ㆍ분석하는데 매우 효과적으로 이용될 수 있다. 최근 체세포 핵이 식기술을 이용하여 동물의 복제가 성공하고 있지만, 임신 중이나 분만시 유사산이 많이 나타나 전반적인 효율이 크게 낮아 실용화에 지장을 초래하고 있다. (중략)

  • PDF

Peptide C-terminal Sequence Analysis by MALDI-TOF MS Utilizing EDC Coupling with Br Signature

  • Shin, Man-Sup;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1183-1186
    • /
    • 2011
  • The unique Br signature was utilized for C-terminal amino acid sequencing of model peptides. C-terminal carboxyl group was selectively derivatized in peptides, containing side chain carboxyl group, using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and Br was introduced using 4-bromophenylhydrazine hydrochloride (BPH) in a one pot reaction. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) tandem mass spectra were obtained carrying the Br signature in the y-series ions. The Br signature facilitated C-terminal sequencing and discrimination of C-terminal carboxyl groups in the free acid and amide forms.

Matrix-assisted Laser Desorption/ Ionization Time-of-flight Mass Spectrometry를 이용한 화장품에서의 계면활성제 분석

  • 이명희;김상진
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-21
    • /
    • 1999
  • 화장품, 의료용, 가정용품 및 공업용제품에까지 광범위한 용도로 사용량이 많은 중요한 비이온 계면활성제의 종류 중에서 polyoxyethylene(POE) 부가형 계면활성제의 경우 그 부가몰수에 따라 특성이 달라지고 용도가 다르게 사용된다. 이때 부가된 분자들의 분자량이 크고 분포를 이루는 혼합물이기 때문에 분석이 매우 어렵다. 따라서 MALDI-TOF/MS 방법을 이용하여 이들의 분자량과 그 분포를 측정함으로써 쉽고 빠르게 측정할 수 있는 새로운 방법을 개발하고자 하였다. 이 논문에서는 화장품에 주로 사용되는 비이온 계면활성제를 선택하여 MALDI-TOF/AfS를 측정하여 스펙트럼으로부터 분자량 분포와 POE부가정도를 측정할 수 있었다. 그리고 이 조건을 적용하여 시중에 판매되는 제품에서 추출된 비이온 계면활성제의 MALDI-TOF/MS 스펙트럼으로부터 분자량 분포와 POE 부가 정도를 확인 할 수 있었다.

  • PDF

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.