Browse > Article

The MALDI-TOF MS determination of yeast proteins producing $H_2S$  

Cho, Hyun-Nam (Dept. of Applied Chemistry, Kumoh National Institute of Technology)
Fan, Lu-An (Dept. of Applied Chemistry, Kumoh National Institute of Technology)
Yoo, Dong-Chan (Dept. of Applied Chemistry, Kumoh National Institute of Technology)
Yang, Seun-Ah (The Center for Traditional Microorganism Resources, Keimyung University)
Lee, In-Seon (The Center for Traditional Microorganism Resources, Keimyung University)
Kim, Jae-Hyung (Bio Institute, Dong-il SHIMADZU Corp.)
Baek, Hyo-Hyun (Bio Institute, Dong-il SHIMADZU Corp.)
Jhee, Kwang-Hwan (Dept. of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
KSBB Journal / v.23, no.5, 2008 , pp. 425-430 More about this Journal
Abstract
Hydrogen sulfide ($H_2S$) is a by-product of metabolism of amino acids including sulfur and alcoholic fermentation, it is generally thought of in terms of a poisonous gas. Though $H_2S$ can have a negative impact on the perceived quality of fermented drinks due to an undesirable aroma, it plays prominent roles as a neuromodulator in the mammalian brain as well as a smooth muscle relaxant. Nowadays studies on the proteins which produce $H_2S$ are carried out in various fields such as structure, function, and metabolism. Here we propose to develop a simple and rapid $H_2S$ forming assay method, which will lead to speed up preparing the $H_2S$ forming proteins for identification by MALDI-TOF MS analysis. We detected three kinds of proteins which produce $H_2S$ in the crude extract of Saccharomyces cerevisiae. Those proteins were cystathionie $\beta$-synthase, O-acetylserine sulfhydrylase, and cystathionine $\gamma$-lyase.
Keywords
Hydrogen sulfide; cystathionine $\beta$-synthase; O-acetylserine sulfhydrylase; MALDI-TOF MS analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Eto, K. and H. Kimura (2002), The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain, J. Neurochem. 83(1), 80-86   DOI   ScienceOn
2 Spiropoulos, A. and L. F. Bisson (2000), MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 66(10), 4421-4426   DOI
3 Edwards, C. G. and J. C. Bohlscheid (2007), Impact of pantothenic acid addition on $H_2S$ production by Saccharomyces under fermentative conditions, Enzyme and Microbial Technology 41, 1-4   DOI   ScienceOn
4 Linderholm, A. L., C. L. Findleton, G. Kumar, Y. Hong, and L. F. Bisson (2008), Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 74(5), 1418-1427   DOI   ScienceOn
5 Linderholm, A. L., T. L. Olineka, Y. Hong, and L. F. Bisson (2006), Allele diversity among genes of the sulfate reduction pathway in wine strains of Saccharomyces cerevisiae, Am. J. Enol. Vitic. 57(4), 431-440
6 Kruger, W. D. and D. R. Cox (1994), A yeast system for expression of human cystathionine ${\beta}$ -synthase: structural and functional conservation of the human and yeast genes, Proc. Natl. Acad. Sci. 91, 6614-6618
7 Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72, 248-254   DOI   ScienceOn
8 Mendes-Ferreira, A., A. Mendes-Faia, and C. Leao (2004), Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry, J. Applied Microbiology 97, 540-545   DOI   ScienceOn
9 Shan, X. and W. D. Kruger (1998), Correction of disease-causing CBS mutation in yeast, Nat. Genet. 19, 91-93   DOI   ScienceOn
10 Kimura, H. (2002), Hydrogen sulfide as a neuromodulator, Mol. Neurobiol. 26(1), 13-19   DOI   ScienceOn
11 Ono, B. I., T. Hazu, S. Yoshida, T. Kawato, S. Shinoda, J. Brzvwczy, and A. Paszewski (1999), Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation, Yeast 15(13), 1365-1375   DOI   ScienceOn
12 Swiegers, J. H. and I. S. Pretorius (2007), Modulation of volatile sulfur compounds by wine yeast, Appl. Microbiol. Biotechnol. 74, 954-960   DOI
13 Jhee, K. H., P. McPhie, and E. W. Miles (2000), Domain architecture of the heme-independent yeast cystathionine ${\beta}$-synthase provides insights into mechanisms of catalysis and regulation, Biochemistry 39(34), 10548-10556   DOI   ScienceOn
14 D'Andrea, R., Y. Surdin-Kerjan, G. Pure, and H. Cherest (1987), Molecular genetics of met17 and met25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene, Mol. Gen. Genet. 207, 165-170   DOI
15 Muunchbach, M., M. Quadroni, G. Miotto, and P. James (2000), Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety, Anal. Chem. 72, 4047-4057   DOI   ScienceOn
16 Eto, K., T. Asada, K. Arima, T. Makifuchi, and H. Kimura (2002), Brain hydrogen sulfide is severely decreased in Alzheimer's disease, Biochem. Biophys. Res. Commun. 293(5), 1485-1488   DOI   ScienceOn
17 Chen, X., K. H. Jhee, and W. D. Kruger (2004), Production of the neuromodulator $H_2B$ by cystathionine ${\beta}$-synthase via the condensation of cysteine and homocysteine, J. Biol. Chem. 279(50), 52082-52086   DOI   ScienceOn
18 Yamagata S. (1976), O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Subunit structure, J. Biochem. 80(4), 787-797   DOI
19 Szabo, C. (2007), Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug. Discov. 6(11), 917-935   DOI   ScienceOn
20 Matthews, A., A. Grimaldi, M. Walker, E. Bartowsky, P. Grbin, and V. Jiranek (2004), Lactic acid bacteria as a potential source of enzymes for use in vinification, Appl. Environ. Microbiol. 70(10), 5715-5731   DOI   ScienceOn
21 Strambini, G. B., P. Cioni, and P. F. Cook (1996), Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway, Biochemistry 35(25), 8392-8400   DOI   ScienceOn
22 Hansen, R., S. Y. Pearson, J. M. Brosnan, P. G. Meaden, and D. J. Jamieson (2006), Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation, Appl. Biochem. Biotech. 72, 116-125
23 Jhee, K. H., H. N. Cho, S. A. Yang, and I. S. Lee (2007), Biochemical characteristics for the cofactor free mutant of yeast homocysteine catalyzing enzyme, cystathionine ${\beta}$-synthase, Kor. J. Microbiol. Biotechnol. 35(3), 196-202   과학기술학회마을
24 Trabalzini, L., A. Paffetti, A. Scaloni, F. Talamo, E. Ferro, G. Coratza, L. Bovalini, P. Lusini, P. Martelli, and A. Santucci (2003), Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae, Biochem. J. 370, 35-46   DOI   ScienceOn