Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.9.2635

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry  

Jeong, Young-Su (CBR Defense Directorate, Agency for Defense Development (ADD))
Lee, Jonghee (CBR Defense Directorate, Agency for Defense Development (ADD))
Kim, Seong-Joo (CBR Defense Directorate, Agency for Defense Development (ADD))
Publication Information
Abstract
The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.
Keywords
Spore; Bacillus; Anthrax; MALDI-TOF MS; Direct in-situ analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marchetti-Deschmann, M.; Winkler, W.; Dong, H.; Lohninger, H.; Kubicek, C. P.; Allmaier, G. Food Technolol. Biotechnol. 2012, 50, 334-342.
2 Chen, H. Y.; Chen, Y. C. Rapid Commun. Mass Spectrom. 2005, 19, 3564-3568.   DOI   ScienceOn
3 Fritze, D. Phytopathology 2004, 94, 1245-1248.   DOI   ScienceOn
4 Bartlett, J. G.; Inglesby, T. V., Jr.; Borio, L. Clin. Inject. Dis. 2002, 35, 851-858.   DOI   ScienceOn
5 Edwards, K. A.; Clancy, H. A.; Baeumner, A. J. Anal. Bioanal. Chem. 2006, 384, 73-84.   DOI
6 Sintchenko, V.; Iredell, J. R; Gilbert, G. L. Nat. Rev. Microbiol. 2007, 5, 464-470.   DOI   ScienceOn
7 Barbuddhe, S. B.; Maier, T.; Schwarz, G.; Kostrzewa, M.; Hof, H.; Domann, E.; Chakraborty, T.; Hain, T. Appl. Environ. Microbiol. 2008, 74, 5402-5407.   DOI   ScienceOn
8 Fenselau, C.; Demirev, P. A. Mass Spectrom. Rev. 2001, 20, 157-171.   DOI   ScienceOn
9 He, Y.; Chang, T. C.; Li, H.; Shi, G.; Tang, Y.-W. Can. J. Microbiol. 2011, 57, 533-538.   DOI   ScienceOn
10 Lasch, P.; Beyer, W.; Nattermann, H.; Stammler, M.; Siegbrecht, E.; Grunow, R.; Naumann, D. Appl. Environ. Microbiol. 2009, 75, 7229-7242.   DOI   ScienceOn
11 Lay, J. O., Jr.; Liyanage, R. In Identification of Microorganisms by Mass Spectrometry; Wilkins, C. L., Lay, J. O., Jr., Eds.; John Wiley & Sons: NJ, U.S.A, 2006; p 352.
12 Moura, H.; Woolfitt, A. R.; Carvalho, M. G.; Pavlopoulos, A.; Teixeira, L. M.; Satten, G. A.; Barr, J. R. FEMS Immunol. Med. Microbiol. 2008, 53, 333-342.   DOI   ScienceOn
13 Dang, J. L.; Heroux, K.; Kearney, J.; Arasteh, A.; Gostomski, M.; Emanuel, P. A. Appl. Environ. Microbiol. 2001, 67, 3665-3670.   DOI   ScienceOn
14 Welker, M.; Moore, E. R. B. Syst. Appl. Microbiol. 2011, 34, 2-11.   DOI   ScienceOn
15 Aemirev, P. A.; Feldman, A. B.; Kowalski, P.; Lin, J. S. Anal. Chem. 2005, 77, 7455-7461.   DOI   ScienceOn
16 Nicholson, W. L.; Setlow, P. In Molecular Biological Methods for Bacillus; Harwood, C. R., Cutting, S. M., Eds.; Chichester, Wiley: 1990; pp 391-450.
17 Savitzky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627-1639.   DOI