Browse > Article
http://dx.doi.org/10.7841/ksbbj.2016.31.4.263

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches  

Hwang, Cheol-hwan (Department of Chemical Engineering, Soongsil University)
Park, Han-Gyu (Department of Chemical Engineering, Soongsil University)
Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
Publication Information
KSBB Journal / v.31, no.4, 2016 , pp. 263-269 More about this Journal
Abstract
For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.
Keywords
Arctic soils; Gram negative bacteria; Lipid A; MALDI-TOF MS; MALDI multi-stage tandem MS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Romanovsky, V., D. Drozdov, N. Oberman, G. Malkova, A. Kholodov, S. Marchenko, N. Moskalenko, D. Sergeev, N. Ukraintseva, and A. Abramov (2010) Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21: 136-155.   DOI
2 Brown, J. and V. E. Romanovsky (2008) Report from the International Permafrost Association: State of permafrost in the first decade of the 21st century. Permafr. Periglac. Process. 19: 255-260.   DOI
3 Soina, V. S., A. L. Mulyukin, E. V. Demkina, E. A. Vorobyova, and G. I. El-Registan (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4: 345-358.   DOI
4 Crevecoeur, S., W. F. Vincent, J. Comte, and C. Lovejoy (2015) Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front. Microbiol. 6: 192.
5 Glauser, M., G. Zanetti, J. D. Baumgartner, and J. Cohen (1991) Septic shock: pathogenesis. Lancet. 338: 732-736.   DOI
6 Heumann, D. and T. Roger (2002) Initial responses to endotoxins and Gram-negative bacteria. Clin. Chim. Acta. 323: 59-72.   DOI
7 Kim, M. J., N. Y. Bae, K. B. W. R. Kim, J. H. Park, S. H. Park, Y. J. Cho, and D. H. Ahn (2015) Anti-inflammatory effect of water extract from tuna heart on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. KSBB J. 30: 326-331.   DOI
8 Mun, O. J., M. S. Kwon, M. J. Bae, B. N. Ahn, F. Karadeniz, M. Kim, S. H. Lee, K. H. Yu, Y. Y. Kim, and Y. Seo (2015) Antiinflammatory activity of Hizikia fusiformis extracts fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 macrophages. KSBB J. 30: 38-43.   DOI
9 Takayama, K., N. Qureshi, C. Raetz, E. Ribi, J. Peterson, J. Cantrell, F. Pearson, J. Wiggins, and A. Johnson (1984) Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities. Infect. Immun. 45: 350-355.
10 Lerouge, I. and J. Vanderleyden (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26: 17-47.   DOI
11 Raetz, C. R. (1990) Biochemistry of endotoxins. Annu. Rev. Biochem. 59: 129-170.   DOI
12 Schromm, A. B., K. Brandenburg, H. Loppnow, A. P. Moran, M. H. Koch, E. T. Rietschel, and U. Seydel (2000) Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267: 2008-2013.   DOI
13 Molinaro, A., A. Silipo, R. Lanzetta, M. Parrilli, P. Malvagna, A. Evidente, and G. Surico (2002) Determination of the structure of the lipid a fraction from the lipopolysaccharide of Pseudomonas cichorii by means of NMR and MALDI-TOF mass spectrometry. European J. Org. Chem. 2002: 3119-3125.   DOI
14 Suda, Y., T. Ogawa, W. Kashihara, M. Oikawa, T. Shimoyama, T. Hayashi, T. Tamura, and S. Kusumoto (1997) Chemical structure of lipid A from Helicobacter pylori strain 206-1 lipopolysaccharide. J. Biochem. 121: 1129-1133.   DOI
15 Harper, M., F. St Michael, J. A. Steen, M. John, A. Wright, L. van Dorsten, E. Vinogradov, B. Adler, A. D. Cox, and J. D. Boyce (2015) Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: Identification of lipopolysaccharide genotypes L4 and L8. Glycobiology 25: 294-302.   DOI
16 Sturiale, L., A. Palmigiano, A. Silipo, Y. A. Knirel, A. P. Anisimov, R. Lanzetta, M. Parrilli, A. Molinaro, and D. Garozzo (2011) Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. J. Mass Spectrom. 46: 1135-1142.   DOI
17 Takayama, S., E. Saitoh, R. Kimizuka, S. Yamada, and T. Kato (2009) Effect of eel galectin AJL-1 on periodontopathic bacterial biofilm formation and their lipopolysaccharide-mediated inflammatory cytokine induction. Int. J. Antimicrob. Agents. 34: 355-359.   DOI
18 Jiang, H., H. Dong, G. Zhang, B. Yu, L. R. Chapman, and M. W. Fields (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl. Environ. Microbiol. 72: 3832-3845.   DOI
19 Yin, E. T., C. Galanos, S. Kinsky, R. A. Bradshaw, S. Wessler, O. Lüderitz, and M. E. Sarmiento (1972) Picogram-sensitive assay for endotoxin: Gelation of Limulus polyphemus blood cell lysate induced lipopolysaccharides and lipid A from gram-negative bacteria. Biochim. Biophys. Acta. 261: 284-289.   DOI
20 Gross, M., H. Mayer, C. Widemann, and K. Rudolph (1988) Comparative analysis of the lipopolysaccharides of a rough and a smooth strain of Pseudomonas syringae pv. phaseolicola. Arch. Microbiol. 149: 372-376.   DOI
21 Kulshin, V. A., U. Zähringer, B. Lindner, K. E. Jäger, B. A. Dmitriev, and E. T. Rietschel (1991) Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur. J. Biochem. 198: 697-704.   DOI
22 Ernst, R. K., C. Y. Eugene, L. Guo, K. B. Lim, J. L. Burns, M. Hackett, and S. I. Miller (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286: 1561-1565.   DOI
23 Ernst, R. K., A. M. Hajjar, J. H. Tsai, S. M. Moskowitz, C. B. Wilson, and S. I. Miller (2003) Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J. Endotoxin Res. 9: 395-400.   DOI
24 Lee, C. S., Y. G. Kim, H. S. Joo, and B. G. Kim (2004) Structural analysis of lipid A from Escherichia coli O157:H7:K - using thinlayer chromatography and ion-trap mass spectrometry. J. Mass Spectrom. 39: 514-525.   DOI
25 Kussak, A. and A. Weintraub (2002) Quadrupole ion-trap mass spectrometry to locate fatty acids on lipid A from Gram-negative bacteria. Anal. Biochem. 307: 131-137.   DOI
26 Hsu, F. F. and J. Turk (2000) Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: A mechanistic proposal. J. Am. Soc. Mass Spectrom. 11: 892-899.   DOI
27 Koy, C., S. Mikkat, E. Raptakis, C. Sutton, M. Resch, K. Tanaka, and M. O. Glocker (2003) Matrix-assisted laser desorption/ionization-quadrupole ion trap-time of flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by in-gel tryptic digestion of haptoglobin derivatives from human plasma proteomes. Proteomics 3: 851-858.   DOI