• Title/Summary/Keyword: MALDI-TOF/TOF

Search Result 468, Processing Time 0.026 seconds

Development of a Matrix-prespotted Plate for Enhancing the Reproducibility of Serum Glycan Analysis by MALDI-TOF-MS

  • Ha, Mi-Young;In, Young-Ha;Maeng, Hye-Sun;Zee, Ok-Pyo;Lee, Jong-Sik;Kim, Yang-Sun
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.61-64
    • /
    • 2011
  • Matrix Assisted Laser Desorption/Ionization-Time-of-Flight mass spectrometry (MALDI-TOF-MS) is the most widely used MS technique for glycan analysis. However, the poor point-to-point and sample-to-sample reproducibility becomes a limit in glycan biomarker research. A prespotted MALDI plate which overcomes the large crystal formation of 2,5-dihydroxybenzoic acid (DHB) has been developed and applied for glycan analysis. A homogeneous matrix coated surface without a crystal structure was formed on a hydrophilic/ hydrophobic patterned surface using a piezoelectric device. The reproducible MALDI-TOF-MS data have been presented using MALDI imaging of beer glycan as well as serum glycan eluted from 10% and 20% ACN elution fractions. The glycan profile from the serum glycan by MALDI-TOF-MS with a DHB prespotted plate was highly conserved for 10 different spectra and the coefficient of variations of significant ion peaks of MALDI data varies from 3.59 to 19.95.

Simple measurement the chelator number of antibody conjugates by MALDI-TOF MS

  • Shin, Eunbi;Lee, Ji Woong;Lee, Kyo Chul;Shim, Jae Hoon;Cha, Sangwon;Kim, Jung Young
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.54-58
    • /
    • 2017
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) is one of the powerful methods that enable analysis of small molecules as well as large molecules up to about 500,000 Da without severe fragmentation. MALDI-TOF MS, thus, has been a very useful an analytical tool for the confirmation of synthetic molecules, probing PTMs, and identifying structures of a given protein. In recent nuclear medicine, MALDI-TOF MS liner ion mode helps researcher calculate the average number of chelator(or linkage) per an antibody conjugate, such as DOTA-(or DFO-) trastuzumab for labeling a medical radioisotope. This simple technique can be utilized to improve the labeling method and control the quality at the development of antibody-based radiopharmaceuticals, which is very effected to diagnosis and therapy for in vivo tumor cells, with radioisotopes like $^{89}Zr$, $^{64}Cu$, and 177Lu. To minimize the error, MALDI-TOF MS measurement is repeatedly performed for each sample in this study, and external calibration is carried out after data collection.

Reliable Identification of Bacillus cereus Group Species Using Low Mass Biomarkers by MALDI-TOF MS

  • Ha, Miyoung;Jo, Hyeon-Ju;Choi, Eun-Kyeong;Kim, Yangsun;Kim, Junsung;Cho, Hyeon-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.887-896
    • /
    • 2019
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based pathogen identification relies on the ribosomal protein spectra provided in the proprietary database. Although these mass spectra can discern various pathogens at species level, the spectra-based method still has limitations in identifying closely-related microbial species. In this study, to overcome the limits of the current MALDI-TOF MS identification method using ribosomal protein spectra, we applied MALDI-TOF MS of low-mass profiling to the identification of two genetically related Bacillus species, the food-borne pathogen Bacillus cereus, and the insect pathogen Bacillus thuringiensis. The mass spectra of small molecules from 17 type strains of two bacilli were compared to the morphological, biochemical, and genetic identification methods of pathogens. The specific mass peaks in the low-mass range (m/z 500-3,000) successfully identified various closely-related strains belonging to these two reference species. The intensity profiles of the MALDI-TOF mass spectra clearly revealed the differences between the two genetically-related species at strain level. We suggest that small molecules with low molecular weight, 714.2 and 906.5 m/z can be potential mass biomarkers used for reliable identification of B. cereus and B. thuringiensis.

MALDI-TOF MS System for the Identification of Microorganisms in Milk and Dairy Products (우유 및 유제품 중 미생물 동정을 위한 MALDI-TOFMS활용)

  • Kim, Hyoun Wook;Ham, Jun-Sang;Seol, Kuk-Hwan;Han, Sangha;Park, Beam Young;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Rapid and reliable identification of microorganisms is a key for tracing the relationship between the target bacteria and related infectious diseases. Various identification methods such as classical phenotypic analysis, numerical taxonomic analysis, and DNA sequencing have been widely used to classify microorganisms in milk and dairy products. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identifies targeted bacteria in milk and milk products. Several studies have demonstrated that MALDI-TOF MS identification is an efficient and inexpensive method for the rapid and routine identification of isolated bacteria. MALDI-TOF MS could provide accurate identification of bacteria in milk and milk products at the serotype or strain level and enable antibiotic resistance profiling within minutes.

  • PDF

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2014
  • The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.

Application of MALDI-TOF mass spectrometry-based identification of foodborne pathogen tests to the Korea Food Standard Codex (MALDI-TOF 질량분석기를 이용한 식품중독균 확인시험 적용)

  • Ha, Miyoung;Son, Eun Jung;Choi, Eun Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.437-444
    • /
    • 2016
  • Rapid and reliable identification of microorganisms is important to maintain food quality and to control safety. MALDI-TOF MS-based identification methods are relatively fast and simple compared to other conventional methods including gram staining and biochemical characterization. A colony on subcultured media can be directly prepared on the analysis plate without further complex treatments. In this study, we confirmed the applicability of MALDI-TOF MS-based identification of foodborne pathogens such as Salmonella Enteritidis/Typhimurium, Staphylococcus aureus, Vibrio parahaemolyticus, Clostridium perfringens, Listeria monocytogenes, Yersinia enterocolitica, Bacillus cereus, Campylobacter jejuni, Campylobacter coli, and Cronobacter sakazakii on the Korea Food Standard Codex. MALDI-TOF MS data of the pathogenic reference strains were incorporated into a commercial MicroID (ASTA Inc.) database. Other pathogenic reference strains and seven isolates from various food samples were correctly identified to the species level by using the MicroID database. In conclusion, MALDI-TOF MS is comparable with commercial biochemical identification.

Mass spectrometry based on nanomaterials (나노물질을 이용한 질량분석 기술 개발동향)

  • Park, Jong-Min;Noh, Joo-Yoon;Kim, Moon-Ju;Pyun, Jae-Chul
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Characterization of Synthetic Polyamides by MALDI-TOF Mass Spectrometry

  • Choi, Hae-Young;Choe, Eun-Kyung;Yang, Eun-Kyung;Jang, Sung-Woo;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2354-2358
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan

  • Lee, Seonghyun;Choe, Sojeong;Oh, Yeeun;Jo, Kyubong
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryptophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.

Investigation of Transglutaminase-Induced Peptide Cross-Linking by Matrix-Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry

  • 김희준;임효섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1299-1302
    • /
    • 1999
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to demonstrate cross-linking of peptides induced by transglutaminase. The presence of ε-( Υ-glutamyl)lysine isopeptide cross-link in the acid hydrolysate of the cross-linking reaction mixture was also demonstrated by MALDI-TOF-MS without prior separation. MALDI-TOF-MS quickly provided peptide mass maps after pronase digestion of the cross-linked peptide adduct, which enabled us to monitor the hydrolytic sequence. Pronase appears to preferentially hydrolyze peptide bonds distant from the cross-link before hydrolyzing peptide bonds around the cross-link. The results suggest that pronase digestion followed by MALDI-TOF-MS could be used for determination of amino acid sequence around a modification site.