DOI QR코드

DOI QR Code

Characterization of Synthetic Polyamides by MALDI-TOF Mass Spectrometry

  • Published : 2007.12.20

Abstract

MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

Keywords

References

  1. Montaudo, G.; Lattimer, R. P. Mass Specrometry of Polymers; CRC Press: New York, 2002; Pasch, H.; Schrepp, W. MALDITOF Mass Spectrometry of Synthetic Polymers; Springer: New York, 2003
  2. Bahr, U.; Deppe, A.; Karas, M.; Hillenkamp, F. Anal. Chem. 1992, 64, 2866 https://doi.org/10.1021/ac00046a036
  3. Nielen, M. W. F. Mass Spectrom. Rev. 1999, 18, 309 https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<309::AID-MAS2>3.0.CO;2-L
  4. Wu, K. J.; Odom, R. W. Anal. Chem. 1998, 69, A456 https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<309::AID-MAS2>3.0.CO;2-L
  5. Thomson, B.; Suddaby, K.; Rudin, A.; Lajoie, G. Eur. Polym. J. 1996, 32, 239 https://doi.org/10.1016/0014-3057(95)00117-4
  6. Pasch, H.; Gores, F. Polymer 1995, 36, 1999 https://doi.org/10.1016/0032-3861(95)91444-C
  7. Braum, D.; Ghahary, R.; Pasch, H. Polymer 1996, 37, 777 https://doi.org/10.1016/0032-3861(96)87253-3
  8. Pasch, H.; Ghahary, R. Macromol. Symp. 2000, 152, 267 https://doi.org/10.1016/0032-3861(96)87253-3
  9. Montaudo, G.; Montaudo, M. S.; Puglisi, C. Journal of Polymer Science, Part A: Polymer Chemistry 1996, 34, 439 https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<439::AID-POLA13>3.0.CO;2-Q
  10. Skelton, R.; Dubois, F.; Zenobi, R. Anal. Chem. 2000, 72, 1707 https://doi.org/10.1021/ac991181u
  11. Chionna, D.; Puglisi, C.; Samperi, F.; Montaudo, G.; Turturro, A. Rapid Communications in Mass Spectrmetry 2001, 22, 524 https://doi.org/10.1021/ac991181u
  12. Puglisi, C.; Samperi, F.; Giorgi, S. D.; Montaudo, G. Polymer Degradation and Stability 2002, 78, 369 https://doi.org/10.1016/S0141-3910(02)00188-X
  13. Carroccio, S.; Puglisi, C.; Montaudo, G. Macromolecules 2003, 36, 7499 https://doi.org/10.1021/ma0344137
  14. Carroccio, S.; Puglisi, C.; Montaudo, G. Macromolecules 2004, 37, 6037 https://doi.org/10.1021/ma049521n
  15. Montaudo, G.; Montaudo, M. S.; Puglisi, C.; Samperi, F. Rapid Communications in Mass Sjpectrmetry 1994, 8, 981 https://doi.org/10.1002/rcm.1290081215
  16. Montaudo, G.; Montaudo, M. S.; Puglisi, C.; Samperi, F. Anal. Chem. 1994, 66, 4366 https://doi.org/10.1021/ac00095a038
  17. Montaudo, G.; Montaudo, M. S.; Puglisi, C.; Samperi, F. Rapid Communications in Mass Spectrmetry 1995, 9, 453 https://doi.org/10.1002/rcm.1290090514
  18. Montaudo, M.; Puglisi, C.; Samperi, F.; Montaudo, G. Rapid Communications in Mass Spectrmetry 1998, 12, 519 https://doi.org/10.1002/(SICI)1097-0231(19980515)12:9<519::AID-RCM186>3.0.CO;2-L
  19. Danis, P. O.; Karr, D. E. Org. Mass Spec. 1993, 28, 923 https://doi.org/10.1002/oms.1210280818
  20. Mowat, I. A.; Donovan, R. J.; Maier, R. R. J. Rapid Communications in Mass Spectrmetry 1997, 11, 89 https://doi.org/10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G
  21. Mowat, I. A.; Donovan, R. J.; Maier, R. R. J. Rapid Communications in Mass Spectrmetry 1997, 11, 89 https://doi.org/10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G

Cited by

  1. Extrusion-based differences in two types of nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases as applied to the separation of proteins via ion exchange chromatography vol.128, pp.2, 2012, https://doi.org/10.1002/app.38509
  2. New insights into synthesis and oligomerization of ε-lactams derived from the terpenoid ketone (−)-menthone vol.5, pp.95, 2015, https://doi.org/10.1039/C5RA15656D
  3. Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene β-Pinene vol.38, pp.9, 2017, https://doi.org/10.1002/marc.201600787
  4. Synthesis of Novel Sustainable Oligoamides Via Ring-Opening Polymerization of Lactams Based on (−)-Menthone vol.215, pp.17, 2014, https://doi.org/10.1002/macp.201400324
  5. 加水分解,熱酸化及び加アルコール分解させたポリアミド6及びポリアミド66のMALDI-TOF-MSによる末端化学構造解析 vol.67, pp.10, 2018, https://doi.org/10.2116/bunsekikagaku.67.611
  6. Current literature in mass spectrometry vol.43, pp.7, 2008, https://doi.org/10.1002/jms.1304
  7. MALDI-TOF MS Investigations of Polyamides Synthesized in Autoclave and Microwave Assisted Processes vol.275-276, pp.1, 2009, https://doi.org/10.1002/masy.200950120
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Molecular Simulations and Conformational Studies of Fucoseα1-3)Gal(β1-X)GlcNAc where X=3, 4, or 6 Oligosaccharides vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1755
  10. Hydrolytic Degradation of Synthetic Polytrimethylene Terephthalate and Characterization by MALDI-TOF Mass Spectrometry vol.32, pp.2, 2007, https://doi.org/10.5012/bkcs.2011.32.2.477
  11. Exploration of polyamide structure–property relationships by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry vol.28, pp.15, 2007, https://doi.org/10.1002/rcm.6939
  12. Isolation and characterization of a bioflocculant from Bacillus megaterium for turbidity and arsenic removal vol.32, pp.4, 2015, https://doi.org/10.1007/bf03402479
  13. Carbon Nanotubes and Graphene Promote Pyrolysis of Free-Base Phthalocyanine vol.9, pp.15, 2007, https://doi.org/10.1021/acs.jpclett.8b02141
  14. Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis vol.11, pp.1, 2007, https://doi.org/10.1038/s41467-020-14361-6
  15. Microwave Assisted Selective Hydrolysis of Polyamides from Multicomponent Carpet Waste vol.5, pp.7, 2007, https://doi.org/10.1002/gch2.202000119