Browse > Article
http://dx.doi.org/10.5478/MSL.2015.6.3.80

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan  

Lee, Seonghyun (Department of chemistry and interdisciplinary program of integrated biotechnology, Sogang University)
Choe, Sojeong (Department of chemistry and interdisciplinary program of integrated biotechnology, Sogang University)
Oh, Yeeun (Department of chemistry and interdisciplinary program of integrated biotechnology, Sogang University)
Jo, Kyubong (Department of chemistry and interdisciplinary program of integrated biotechnology, Sogang University)
Publication Information
Mass Spectrometry Letters / v.6, no.3, 2015 , pp. 80-84 More about this Journal
Abstract
Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryptophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.
Keywords
MALDI-TOF; DNA Binding Peptide; Lysine and Tryptophan-containing Peptide; Non-covalent DNA-Peptide Binding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dimicoli, J. L.; Helene, C. Biochemistry 1974, 13, 724.   DOI
2 Shapiro, J. T.; Leng, M.; Felsenfe.G. Biochemistry 1969, 8, 3219.   DOI
3 Helene, C.; Dimicoli, J. L.; Brun, F. Biochemistry 1971, 10, 3802.   DOI
4 Ballin, J. D.; Prevas, J. P.; Ross, C. R.; Toth, E. A.; Wilson, G. M.; Record, M. T. Biochemistry 2010, 49, 2018.   DOI
5 Mascotti, D. P.; Lohman, T. M. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 3142.   DOI
6 Maurizot, J. C.; Boubault, G.; Helene, C. Biochemistry 1978, 17, 2096.   DOI
7 Mascotti, D. P.; Lohman, T. M. Biochemistry 1993, 32, 10568.   DOI
8 Mascotti, D. P.; Lohman, T. M. Biochemistry 1992, 31, 8932.   DOI
9 Brun, F.; Toulme, J. J.; Helene, C. Biochemistry 1975, 14, 558.   DOI
10 Collier, D. A.; Thuong, N. T.; Helene, C. J. Am. Chem. Soc. 1991, 113, 1457.   DOI
11 Oneil, K. T.; Hoess, R. H.; Degrado, W. F. Science 1990, 249, 774.   DOI
12 Hanson, C. L.; Robinson, C. V. J. Biol. Chem. 2004, 279, 24907.   DOI
13 Galas, D. J.; Schmitz, A. Nucleic Acids Res. 1978, 5, 3157.   DOI
14 Garner, M. M.; Revzin, A. Nucleic Acids Res. 1981, 9, 3047.   DOI
15 Terrier, P.; Tortajada, J.; Buchmann, W. J. Am. Soc. Mass Spectrom. 2007, 18, 346.   DOI
16 Park, S.; Jo, K.; Oh, H. Analyst 2011, 136, 3739.   DOI
17 Madler, S.; Erba, E. B.; Zenobi, R. Top. Curr. Chem. 2013, 331, 1.
18 Juhasz, P.; Biemann, K. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 4333.   DOI
19 Terrier, P.; Tortajada, J.; Zin, G.; Buchmann, W. J. Am. Soc. Mass Spectrom. 2007, 18, 1977.   DOI
20 Kim, Y.; Jo, K. Chem. Comm. 2011, 47, 6248.   DOI
21 Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5076.   DOI
22 Firczuk, M.; Wojciechowski, M.; Czapinska, H.; Bochtler, M. Nucleic Acids Res. 2011, 39, 744.   DOI
23 Montenay, T.; Helene, C. Nature 1968, 217, 844.   DOI
24 Helene, C.; Dimicoli, J. L. Febs Lett. 1972, 26, 6.   DOI
25 Toulme, J. J.; Charlier, M.; Helene, C. Proc. Natl. Acad. Sci. U. S. A. 1974, 71, 3185.   DOI
26 Murade, C. U.; Subramaniam, V.; Otto, C.; Bennink, M. L. Chemphyschem. 2011, 12, 2545.   DOI
27 Helene, C. Nature 1971, 234, 120.   DOI
28 Gidoni, D.; Dynan, W. S.; Tjian, R. Nature 1984, 312, 409.   DOI