• Title/Summary/Keyword: Lyapunov Function

Search Result 494, Processing Time 0.026 seconds

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

A New Robust Discrete Static Output Feedback Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.630-635
    • /
    • 2010
  • In this paper, a new discrete static output feedback variable structure controller based on a new dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed dynamic-type sliding surface. The output feedback discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined dynamic-type sliding surface for guaranteeing the designed output in the dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Stabilization for Nonlinear systems with state constraints (상태변수에 제한조건을 가지는 비선형 시스템의 안정화)

  • Kim, Su-Bum;Seo, Sang-Bo;Lee, Sung-Hun;Seo, Jin-H.;Shim, Hyung-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.185-186
    • /
    • 2008
  • In this paper, the problem of stabilization for nonlinear systems with state constraints is addressed. The designed Lyapunov function guarantees that system states remain within constraints for all time and the control law constructed using backstepping renders the origin exponentially stable in the safe region.

  • PDF

Stabilization for Markovian Jump Nonlinear Systems with Time-Delay via T-S Fuzzy Control (시간 지연을 가지는 비선형 마르코비안 점프 시스템의 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.235-236
    • /
    • 2008
  • This paper is concerned with the stabilization problem of Markovian jump nonlinear systems with time-delay via Takagi-Sugeno (T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stochstic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities (LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Robust Adaptive Control for a Class of Nonlinear Systems with Complex Uncertainties

  • Seo, Sang-Bo;Back, Ju-Hoon;Shim, Hyung-Bo;Seo, Jin-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.292-300
    • /
    • 2009
  • This paper considers a robust adaptive stabilization problem for a class of uncertain nonlinear systems which include an unknown virtual control coefficient, an unknown constant parameter, and a time-varying disturbance whose bound is unknown, We propose a new estimator for an un-known virtual control coefficient and present a robust adaptive backstepping design procedure which results in a smooth state feedback control law, a new two-dimensional parameter update law, and a $C^1$ Lyapunov function which is positive definite and proper.

Robust Delay-dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Time-varying Delay (시변지연을 가지는 TS퍼지시스템을 위한 견실 시간종속 안정성판별법)

  • Liu, Yajuan;Lee, Sangmoon;Kwon, Ohmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.891-899
    • /
    • 2015
  • This paper presents the robust stability condition of uncertain Takagi-Sugeno(T-S) fuzzy systems with time-varying delay. New augmented Lyapunov-Krasovskii function is constructed to ensure that the system with time-varying delay is globally asymptotically stable. Also, less conservative delay-dependent stability criteria are obtained by employing some integral inequality, reciprocally convex approach and new delay-partitioning method. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

A New Robust Discrete Integral Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 적분형 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1167-1172
    • /
    • 2010
  • In this paper, a new discrete integral variable structure controller based on the a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral sliding surface. The discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral sliding surface for guaranteeing the designed output in the integral sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Optimal Control for Discrete-Time Takagi-Sugeno Fuzzy Systems Based on Relaxed Non-Quadratic Stabilization Conditions (완화된 Non-Quadratic 안정화 조건을 기반으로 한 이산 시간 Takagi-Sugeno 퍼지 시스템의 최적 제어)

  • Lee, Dong-Hwan;Park, Jin-Bae;Yang, Han-Jin;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1724_1725
    • /
    • 2009
  • In this paper, new approaches to optimal controller design for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems are proposed based on a relaxed approach, in which non-quadratic Lyapunov function and non-parallel distributed compensation (PDC) control law are used. New relaxed conditions and linear matrix inequality (LMI) based design methods are proposed that allow outperforming previous results found in the literature. Finally, an example is given to demonstrate the efficiency of the proposed approaches.

  • PDF

Stability of Interval Time-delayed Linear Systems using a Switched System Approach (전환 시스템 접근법을 이용한 구간 시간지연 선형 시스템의 안정성)

  • Kim, Joo-Kyeong;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • This paper considers the stability of linear systems having an interval time-varying delay using a switched system approach. The time-delay system is converted to the switched system equivalently, and then a stability criterion in the form of linear matrix inequality(LMI) is derived by using a parameter dependent Lyapunov-Krosovskii function(PD-LKF). In constructing a PD-LKF, the decomposition is employed for delay free intervals, and the reduction of conservatism is shown analytically as the number of decomposition increases. Finally, two well-known numerical examples are given to show the reduction of conservatism compared to the recent results.

DISTURBANCE ATTENUATION FOR A CLASS OF DISCRETE-TIME SWITCHED SYSTEMS WITH EXPONENTIAL UNCERTAINTY

  • Li, Changlin;Long, Fei;Ren, Guohui
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.775-795
    • /
    • 2011
  • The disturbance attenuation problem for a class of discretetime switched linear systems with exponential uncertainties via switched state feedback and switched dynamic output feedback is investigated, respectively. By using Taylor series approximation and convex polytope technique, exponentially uncertain discrete-time switched linear system is transformed into an equivalent switched polytopic model with additive norm bounded uncertainty. For such equivalent switched model, one designs its switching strategy and associated state feedback controllers and dynamic output feedback controllers so that whole switched model is asymptotical stabilization with H-in nity disturbance attenuation base on switched Lyapunov function and LMI approach. Finally, two numerical examples are presented to illustrate our results.