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Robust Delay-dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with 
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Abstract - This paper presents the robust stability condition of uncertain Takagi-Sugeno(T-S) fuzzy systems with 
time-varying delay. New augmented Lyapunov-Krasovskii function is constructed to ensure that the system with time-varying
delay is globally asymptotically stable. Also, less conservative delay-dependent stability criteria are obtained by employing
some integral inequality, reciprocally convex approach and new delay-partitioning method. Finally, two numerical examples are
provided to demonstrate the effectiveness of the proposed method.
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1. Introduction
Since Takagi-Sugeno(T-S) fuzzy model was first 

introduced in [1], the stability and design conditions for 
T-S fuzzy systems have been paid much attention. The 
main advantage of T-S fuzzy model is that it can combine 
the exibility of fuzzy logic theory and rigorous mathematical 
theory of linear system into a unified framework to 
approximate complex nonlinear systems [2-4]. On the other 
hand, time delays often appears in many dynamical systems 
such as metallurgical processes, biological systems, neural 
networks, networked control systems and so on. The 
existence of time delay may cause poor performance or 
instability. Hence, the stability of T-S fuzzy systems with 
time delay has been studied by many researchers 
[5-24,30,31]. 

It is well known that the delay-dependent stability 
criteria are less conservative that delay-independent ones 
especially that the time-delay is small. The main issue of 

delay-dependent stability criteria is to find a maximum 
delay bounds to guarantee the asymptotic stability of the 
considered systems. Therefore, the study of increasing the 
maximum delay bounds in delay-dependent stability criteria 
for fuzzy systems is an important topic and have been 
investigated by many researchers. In [5], the delay 
dependent stability problem for T-S fuzzy systems with 
time varying delay was investigated. Some stability criteria 
or stabilization of delayed T-S fuzzy systems were derived 
by employing free-weighting matrix [6,9,12]. Furthermore, 
the results was further studied by using delay-partitioning- 
based approach [13,17,19,23]. Recently, in [18], an 
augmented Lyapunov-Krasovskii functional approach that 
introduces a triple integral and some augmented vectors was 
employed to investigate the stability problem of T-S fuzzy 
systems with time-varying delay. In [20], the improved 
results was obtained by quadratically convex approach. The 
results was further improved in [24] by employing the 
delay-partitioning method and reciprocally convex approach. 
However, though these results and analytic methods are 
elegant, there still exist some rooms for further 
improvements. First, in [8,11,20,18], Jensen's inequality, 
free-weighting matrix and quadratically convex combination 
approach are used to derive the stability condition. However, 
reciprocally convex approach [25], which can play an 
important role in reducing conservatism of the stability 
condition, is not used in [8,11,20,18]. Second, though the 



reciprocal convex approach, delay-partitioning and integral 
inequalities method are combined to obtain some less 
conservative results in [24], it still needs some 
improvements since it only used the improved inequality in 
constant delay, not employed in time-varying delay. 
Furthermore, it can be predicted that delay-partitioning 
approach can provide tighter upper bounds than the results 
without delay-partitioning approach. However, as 
delay-partitioning number increases, matrix formulation 
becomes complex and time consuming and computational 
burden grow bigger. Therefore, there are rooms for further 
improvement in stability analysis of T-S fuzzy systems with 
time-varying delay.

In this paper, the stability analysis conditions for uncertain 
T-S fuzzy systems with time-varying delay are proposed. By 
construction of a modified augmented Lyapunov-Krasovskii 
functional approach, an improved stability criterion for 
guaranteeing the asymptotically stable is derived by using 
Wirtinger-based integral inequality [26], reciprocally convex 
approach [25], and new delay-partitioning method. It should 
be pointed out that different with delay-partitioning method 
used in [24], we only divide the time interval into two 
sub-intervals, and consider two different cases of 
delay-partitioning method. Moreover, some robust stability 
criteria of uncertain T-S systems with time varying delay is 
provided. Finally, two numerical examples are given to 
demonstrate the effectiveness of the proposed method.

Notation: Throughout the paper, R  denotes the 
-dimensional Euclidean space, R×  denotes the set of 
 by  real matrix. For symmetric matrices ,  
and , mean that  is a positive/negative definite 
symmetric matrix, respectively.  and  denote the 
identity matrix and zero matrix with appropriate 
dimension. ⋆ represents the elements below the main 
diagonal of a symmetric matrix.  denotes the 
diagonal matrix. 

2. Problem Statements
Consider the following nonlinear system which can be 

modeled as T-F fuzzy model type subject to time-varying 
delay:

Rule : If   is  and  and if   is 
      

   ∈   
(1)

where     are the premise variables,  is 
fuzzy set,     is the index number of 

fuzzy rules, and ∈  denotes the state of the system. 
  and   are the known system matrices and 
delayed-state matrices with appropriate dimensions, 
respectively.  is a continuously real-valued initial 
function vector. we assume that  is a time-varying 
delay satisfying

≤≤
≤ (2)

where  are known constants. 

The uncertainties satisfy the following condition:
      (3)

where   are known constant matrices; ∈×   
is the unknown real time-varying matrices with 
Lebesgue measurable elements bounded by 
≤  ≥ (4)
Using singleton fuzzifier, product inference, and 

center-average defuzzifier, the global dynamics of the 
delayed T-S system (1) is described by the convex sum 
form

 
  



      (5)

where   denotes the normalized membership 
function satisfying

  






 

 
   

 



   (6)

where    is the grade of membership of   in 
 It is assumed that

 ≥ 
  



   ≥ (7)

Then, we have the following condition

 ≥ 
  



    ≥ (8)

For the sake of simplicity, let us define




  



 


  



 


  



 


  



 

(9)

Now, the system (5) can be rewritten as
  

 

  

     (10)

In what follows, some essential lemmas are introduced.
Lemma 1 [26] For a given matrix , the following 
inequality holds for all continuously differentiable 
function  in ∈ :

  



  ≤          

where 
 





. 

Lemma 2 [28] For a given matrix , 
 ≤ ≤  , and any appropriate dimension matrix , 
which satisfies 


 


 

⋆
≥ Then, the following inequality 

holds for all continuously differentiable function 

  
 

   
≤ 




 


 

⋆


where
  

 
 

 
 

   

    

 
 

   



    

    

 
  

  





 


 

⋆


Lemma 3 (Fisher's Lemma [27]) Let 
∈ ∈× and ∈×  such that ≤. 
The following statements are equivalent

(i) ∀ ≠
(ii) ⊥ 

⊥ where ⊥  is a right orthogonal 
complement of .

(iii) ∃∈×   

3. Main Results
In this section, we first propose a stability criterion for 

delayed T-S fuzzy systems without uncertainties, and the 
following nominal system will be considered:
   (11)

For the sake of simplicity of matrix and vector 
representations, ∈ ×    are defined as 
block entry matrices (for example (         ). 
The other notations are defined as :

       
   


 

 

   





 

  







 

 

   







,


      

   


 

 

    





 

  

  





 

 









,


        


       


            


            


 

     
      





 

     
      




  
 



   
 

 



  


 

 
 
⋆ 





  


      



       



  


       



       



  


 

 
 
⋆ 




 
   

 


 
   

 


        

         

Now we have the following Theorem. 

Theorem 1 For given scalars  , the 



system (11) is globally asymptotically stable if there 
exist symmetric positive matrices 
∈ × , and any matrix 
 ∈ ×  such that the following LMIs hold


⊥ 

  ∈ 
⊥  (12)


⊥ 

  ∈  
⊥  (13)




 




 

⋆
≥  (14)

where  



 

⋆
. 

Proof: Let us consider the following Lyapunov-Krasovskii 
functional candidate as 

 
  



 (15)

where

 





















 

   



















 






 

  


,

 
   





 
 




 

  


 







 


  


  


Depending on whether the time-varying delay  
belongs the interval ≤≤  or  ≤≤ , 
different upper bound of the    can be obtained 
as two cases:

When ≤≤ , the time-derivative of 
   can be calculated as

 











  






  




  





  















 
        

       

  
 (16)

≤
 

 

    (17)
≤

 
 

 
 

   (18)

By applying Lemma 2, an upper bound of  is obtained 
as

 
 






 




 
 






    





  

 




≤
 



 



 




 

⋆ 


   (19)

where
  

 
 

 
 

   

    

 
 

   



   

   

 
  





Note that when    or    , we have 
       or        Then (19) still 
holds. 
Next, an upper bound of   can be derived by Lemma 

1, 
 

 


 

   


≤
 





 

  
 (20)

w h e r e 
 

 
 

  


Therefore, in the case of ≤≤ , form Eqs. 
(16)-(20), an upper bound of  can be given as 
≤  (21)

Based on Lemma 3,    
with  

  



    is equivalent to 




 



 
⊥ 


⊥   Furthermore, the above 

condition is affinely dependent on . Hence, (12) 
and (14) imply 

  



 
⊥ 


⊥ 

Next, when  ≤≤ , the time-derivative of   
is

 











  






  






   



  















 
        

      

 
 (22)

Based on Eq. (17) and (18), an derivative of 
   can be calculated as 
≤



   (23)

By Lemma 1, 
 

 



 

 




≤ 
 






 
  

    (24)

where  
 

 



.
Also, an upper bound of  can be obtained by 
utilizing Lemma 2 
 

 


 

   




≤
 


 

    



  

   


≤
 

 



 




 

⋆ 


 
 (25)

where
  

 
 

 
 

   

    

 
 

   



   

   

 
  

   


Note that when   or    , we have 

       or          . Thus, Eq. 
(25) still holds. 
Therefore, from Eqs. (22)-(25), an upper bound of 
  in the case of  ≤≤  can be given as 
≤

 (26)

Based on Lemma 3,   
with  

  



 
   is equivalent to 


  



 
⊥ 


⊥   Furthermore, the above 

condition is affinely dependent on . Hence, (13) 
and (14) imply

 



 
⊥ 


⊥   This 

completes the proof. 

Remark 1. Unlike in [24], the proposed Lyapunov-Krasovskii 
functional in (15) are divided the time delay interval 
 into different size because of introducing parameter 
. When , it can be reduced to the ones employed 
in [24], which divides the time delay interval into the 
same size, that is,    


∪


 . In other 

words, based on two delay decomposing approach, the 
Lyapunov-Krasovskii functional constructed in this paper 
is more general than the ones used in [24]. When 
 , constructing the following Lyapunov functional 
candidate as

 
  



 (27)

where 
 

 

 


 












 





,

the others are the same with the ones in (15).

Remark 2. It should be pointed out that the proposed 
delay-partitioning method is different from existing ones 
[24,29]. In [29], by using nonuniform decomposition method 
that the whole delay interval is nonuniformly decomposed 
into multiple subintervals. In [24], uniform decomposition 
method is used, which divides the delay interval into the 



same size. While the conventional method use pre-known 
constant value to divide the delay interval, a new 
nonuniform delay-partitioning method is proposed by 
introducing parameter , that is, delay interval is divided 
as     ∪ .

Based on Eq. (27) with , the following Corollary 
can be obtained from Theorem 1.

Corollary 1. For given scalars   , the 
system (11) is globally asymptotically stable if there 
exist symmetric positive matrices 
∈ ×∈×  , and any matrix 
 ∈ ×  such that the following LMIs hold


⊥ 

  ∈ 
⊥  (28)


⊥ 

  ∈  
⊥  (29)




 




 

⋆
≥  (30)

where 


  


 



  


 


     
      



Remark 3. Unlike the constructed Lyapunov-Krasovskii 
functional in (15), the cross term of the state  and 
 in (15) are considered, which may provide 
improved stability condition. 

For uncertain T-S fuzzy system (10), since 
 ≤ , there exists a positive scalar  
satisfying the following inequality: 
   ≥ Define      and 

  

 , ∈ ×   , and the other 

notations are given as follows:

          



   


  




   

  





  






 




  



















 


 








 






 



































 






 
 
⋆ 







 





 






 






 




 






 






 





 
 
⋆ 

















 

















 



  

Now we have the following Corollary 2 and Corollary 3.

Corollary 2. For given scalars  , the 
system (10) is globally asymptotically stable if there 
exist symmetric positive matrices 
∈ × , and any matrix 
 ∈ × , and a positive scalar  such that the 
following LMIs hold



⊥ 

 ∈ 


⊥ (31)



⊥ 

 ∈  

⊥ (32)




 




 

⋆
≥  (33)

Corollary 3. For given scalars   , the 
system (10) is globally asymptotically stable if there 
exist symmetric positive matrices 
∈ ×∈×  , and any matrix 
 ∈ × , and a positive scalar  such that the 
following LMIs hold


⊥ 

 ∈ 

⊥ (34)



⊥ 

 ∈  

⊥ (35)




 




 

⋆
≥  (36)

where 












 

















 






  


 



  


 


 




  

 




4. Numerical Examples

In this section, two numerical examples are given to 
show the effectiveness of the proposed method.
Example 1 Consider the system with the following 
parameters:

 


 
 



 



 
 




 


 
 



 



 
 





For different , the upper bounds of the time-varying 
delay computed by the proposed method and those in 
[8,11,20,18,24] are listed in Table 1. It is easy to 
know that the proposed method in this paper is less 
conservative than those in the existing results.

 0.03 0.1 0.5 0.9
[8] 0.5423 0.4809 0.4752 0.4455
[11] 0.5456 0.5030 0.4995 0.4988
[20] 0.7806 0.5906 0.5392 0.5268
[18] 0.8369 0.7236 0.7154 0.7014
[24] 0.8771 0.7687 0.7584 0.7524

Theorem 1
 

1.5835 1.2444 1.2216 1.1686
Theorem 1
  1.5906 1.2698 1.2445 1.1852

Corollary 1 
 

1.6840 1.3925 1.3566 1.2771

표 1 다른 값에 대한 상한유계지연 
Table 1 Upper delay bound   for different 

Example 2 Consider the system with the following 
parameters:

 


 
 



 



 




 



 
 





 


 
 



 



 
 



 



 
 





 


 
 



 



 
 







 
 





For different , the upper bounds of the time-varying 
delay computed by the proposed method and those in 
[5,9,12,24] are listed in Table 2. It can be concluded that 

the result proposed in this paper is better than the existing 
ones.

 0.01 0.1 0.5 unknown
[5] 0.944 0.892 0.637 -
[9] 1.163 1.122 0.934 0.499
[12] 1.187 1.155 1.100 1.050
[24] 1.382 1.318 1.132 1.127

Theorem 1
 

1.379 1.323 1.151 1.148
Theorem 1
  1.382 1.326 1.154 1.149

Corollary 1 
 

1.382 1.325 1.152 1.149

표 2 다른 값에 대한 상한유계지연 
Table 2 Upper delay bound   for different 

5. Conclusions
The robust stability for uncertain T-S fuzzy systems with 

time-varying delay has been investigated. Based on a 
modified Lyapunov-Krasovskii functional, some less 
conservative criteria have been obtained by employing new 
delay-partitioning technique, integral inequality and 
reciprocally convex approach. It should be worthwhile 
pointed out that different case of delay-partitioning method 
is used in this paper, that is, the delay interval is divided 
into even and not even. Two numerical examples have been 
given to demonstrate the effectiveness of the proposed 
method. 
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