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Robust Adaptive Control for a Class of
Nonlinear Systems with Complex Uncertainties

Sangbo Seo*, Juhoon Back**, Hyungbo Shim* and Jin H. Seo*

Abstract — This paper considers a robust adaptive stabilization problem for a class of uncertain
nonlinear systems which include an unknown virtual control coefficient, an unknown constant parame-
ter, and a time-varying disturbance whose bound is unknown. We propose a new estimator for an un-
known virtual control coefficient and present a robust adaptive backstepping design procedure which
results in a smooth state feedback control law, a new two-dimensional parameter update law, and a C'
Lyapunov function which is positive definite and proper.

Keywords: Robust control, Adaptive backstepping, Unknown virtual coefficient, Nonlinear parame-

terization

1. Introduction

In this paper, we consider the robust adaptive stabiliza-
tion problem for uncertain systems described by

% =X+ fi(x,0) + g, (x,d(1))

X = Xy  [i(x,0) + g, (x,d(1))
xk+1 = bk+1xk+2 + f}c+1 (xa 0) + gk+1 (X, d(t))
Xiy2 = Xz + Fra (6,0) + 84,5, (x,d(1))

(D

X, =u+f,(x,0)+g,(x,d@),
where x=[x,,...,x,]" is the system state, ueR is the

control input, #<R? is an unknown constant vector,
fi :R™ 5 R, i=1l..,n are C' functions with
£(0,...,0,0) =0, d(r)is an unknown piecewise continu-
ous disturbance or parameter belonging to an unknown
compact set QcR?, g.:R™ >R, i=1,...,nare C'
functions with g,(0,...,0,d(¥))=0, and p, eR is an

unknown constant, called an unknown virtual control co-
efficient. We assume the sign of », is known.

Global robust adaptive regulation problem for uncer-
tain nonlinear systems with unknown parameters and dis-
turbances is one of the most important subjects of control
engineering and many researchers have made an effort to
solve this problem. Among the various topics in robust
and adaptive control, we concentrate on the system (1)
with an unknown virtual control coefficient, a nonlinearly
parameterized uncertainty, and a time-varying disturbance
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ranging over an unknown compact set. The key features of
this paper are that we introduce a new parameter estimator
for the unknown virtual control coefficient and that we
consider uncertain systems with disturbances whose
bounds are unknown.

When there is some uncertainty related to the control
direction, the designer cannot know how the control input
affects the behavior of the system. Because of this obsta-
cle, the problem has gained particular interest for linear
systems [1]-[6] and nonlinear systems [7]-[11]. Among
them, the result [11] is regarded as a standard solution and
one of the main assumptions made is that the sign of the
unknown virtual control coefficient is completely known.
In [11], a two-dimensional update law for the virtual con-
trol coefficient is proposed for the system (1) with linear

parameterization, i.e., f(x,0)= fi(xl,__.,xi)e and g.()
=0,i=1,...,n.0n the other hand, we concentrate on de-

signing a one-dimensional update law for the unknown
virtual control coefficient for the system (1) and define the
estimator as [}k = |bk|_exp(7/5k) to exploit the fact

exp(yh,)>0. This construction is one of the main ideas of

the paper and has the advantage of decreasing the dimen-
sion of the update law.

The adaptive backstepping controller proposed in [11]
requires that all uncertain parameters appear in the linear
way. However, systems such as biochemical processes and
dynamics with friction have unknown parameters that
enter the system nonlinearly. To tackle the adaptive con-
trol problem for such cases, some results have been pro-
vided under several restrictive conditions on the unknown
parameters: boundedness of the nonlinear parameters in
[12] and the convex/concave parameterization in [13].
Compared to these, global adaptive regulation proposed in
[14]-[15] does not rely on such restrictive conditions. To
handle the uncertain terms £(-) with unknown parame-

ters, we adopt the decomposition method in [14]-[15]
where the system with g,(-)=0 is considered.
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When dealing with a controlled plant, one often faces
time-varying disturbances. Although many results have
been suggested to solve the robust control problem [16]-
[18], they assume that the disturbances are bounded and
their bounds are known, that is, the time-varying distur-
bances belong to a known compact set. Unlike the previ-
ous results, we suppose that the bound of the disturbance
is unknown to handle a wider class of systems. Based on
the backstepping scheme combined with a domination
method for system uncertainties, we estimate the bound of
the disturbance. This is another main idea of this paper.

This paper is organized as follows. We introduce some
assumptions and key tools in Section 2. In Section 3, our
main result is presented and a constructive design and a
recursive proof are provided by developing a ('
Lyapunov function, a smooth virtual controller and tuning
functions at each step. In Sections 4 and 5, an illustrative
example and concluding remarks are given.

2. Assumptions and Key Tools

In the following, 1

We present some assumptions for uncertainties.

Assumption 1. There is an unknown constant 0<d < oo
such that

ld@|<d, vt>o0. 2)
Assumption 2. There are non-negative smooth functions
fi(x,0) and g (x,,,d(t)) such that

JACX) = [i\x,-!]ﬁ(o, g(x.d()| < [2%@5 ORS)

T
where x . =[x,...,x]".

Next, we recall an inequality from [14] which will be
frequently used throughout the paper.
e For any real-valued continuous function f(x,y)

where x eR”, y e R”, there are smooth scalar functions
a(x)=1, b(y)=1 such that

S, y) < a(x)b(y). )
Using (4), we can deduce that

[i(x:0) < J:(x,)a,(0)
8%, d(1) < &,(x,)b(d),
where  f()>1, a()=1, g,()=1, b()=1 are smooth

functions.
Based on (5), we define

®1=;(a,.(9)+b,.(c7))21, ©=0i20, o

O=0-0(),

where @(r) represents the estimate of .

)

H denotes the usual Euclidean norm.

3. Global Robust Adaptive Regulation

Theorem 1. Suppose that the sign of p, of the system (1)

is known. Then, there exists a dynamic smooth controller
=u(x,
u (x,5) 2 7
$=Q(x,8), &R,

which renders the closed-loop system globally stable in
the sense of Lyapunov and makes all trajectories of the
closed loop system satisfy that

lim x(7) = 0, ¥(x(0), £(0)) e R” xR?.

Proof of Theorem 1: We divide the proof into two parts,
one for the upper subsystem (of dimension k) and the
other for the lower subsystem. The proof for the first part
is standard and thus moved to the Appendix, while the
second part involves the unknown virtual control coefti-
cient which should be dealt with carefully. The results of
the first part are virtual controls

. _ .
x, =0 X =x-Xx
* 2 _ *
x, ==, (x,,0) Xy =Xy =Xy (8)
* 2 — *
X == (X4, O) Xy =X — X,

tuning functions
I1,,=0

HZ,I(x[Z]’ (:)) = H2,1 () +yx. -

2%

I, (g é)) =1L, ,,()+rx, %
I, (x)= x12(71 )
I1,, (x[2] > é) = Hl,z O+ f220—2 )

I1, , (X495 é)) =11, ,,()+ ')_Ckzo-k ),
where o,()>0, i=1,...,k, are smooth functions, and
the Lyapunov function
. k f.z @2
Ve(x,,0) = 271+—.
i=1
Readers are referred to the Appendix for detailed deri-
vation. From now on, we start the second part of the proof,

i.e., the case in which the unknown virtual control coeffi-
cient appears.

Step k+1: At this step, since the unknown virtual

control coefficient p,  appears, we need to design its es-

timator. We define
bk+1 = - GXp(}/lka) )

and choose a (', positive definite, and proper Lyapunov

b

fe+1

function as
s - x
k+1 k+1
Vk+l(x[k+1]’®’bk+l) = Vk(x[k]’®) + 5 + 2,
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where yand y, are tuning gains. The design of (9) is

one of our key ideas. Different from [11], the design re-

duces the dimension of the parameter update law for the

unknown virtual control coefficient, that is, a one-

dimensional update law instead of a two-dimensional one.
We compute the time derivative of 7, = like

Vk+1 = Vk X1 B X2+ fed O+ & ()

_ (&, ox,,
“Xp4 (; 6;;1 X+ 6:»)1 G) ’, “Lexp(y, k+1)bk+1bk+l

(10)
Using (3), (5), (8), and Young’s inequality, we have

fkﬂ(ﬂﬂmgki.(-))—fknz EL(£()+g,() "

=1 O
k=2

X, A
< Z _’; + X101 (K ©)0,

i=l
where o, ()20 is a smooth function. A detailed argu-

ment can be founded in the Appendix.
Substituting (11) into (10), we arrive at

V. ‘",Z( +1_k+1 )

®+Hk+11() [ r2 (D~ }_*'xkxkﬂ

k
by 1 X Xer — X Z X, +xk+lo.k+1 (e

i=1 i
- ox,, —
Xkt [7’ a::)l I, () + %00, OIL,,, ()]
exp(}’i k+1) n1Desrs

2

where

*

- _ Ox,,
I (% ©) =TT, () + 7%, aé)l

L1 g (x{m ]é) =11 ,()+ )—CkZHO.kH 0
Since |b,,,|/exp(7,b,,,) = by, /exp(y,b,, ) +1 by (9), we
design a smooth virtual control as
* sgn(d,.,)

Xy = et | 2, ey, +l+0'+()®
k+2 exp(}/l k“)l: kl( o+l k+l )

a +
_xk+z k+l 6&11—1](2()

(12)
X410 O, () }

sgn(b,,,) A
T e " ,@ y
) & 1(x(k 1 )

- .
Kpra = Xpaz = Xpaa-
With these components, it is easy to have

i k+l 1-i
Vlc+1S—Z(ci+l_k+ Z)fiz

il n
+ (@ + Hk+l,1 (’)){Hm,z () - %}

- [ R SR O+ ‘72:1“ eXp(YIEkH )5k+1 }(Bkﬂ + q]kﬂ,z )

2

+ bk+1)_ck+l‘_x_k+2>
where
~ X, .o (.)
\Piﬁl,l(x[k 1]’®) = kR Y, 1,2 =0.
' exp(rby)

Step  k+2: Choose the Lyapunov function as
Vierr (K 6, 5k+1) =V (X 6, 5k1-1)+ Xir2 / 2. It can be
deduced from the result of step k+1 that
;:;4»2 = Vk+1 X Ks + fra2(O) + 802 ())

_ bx,, . - ox,,
—xk+gz % X, — X 6; By + Fin O+ € ()

i=1 é;xi k+1
O, A = O, 7
X2 xk:“ O~ % = by, (13)
o6 ob,,,

Similarly to (11), we can find a smooth function
0,,,()=0 such that

k+1

Yo ([t 8O- xuzz k+2(f() +g,()

k+l +2

x5 _ A
< Z —+ xkz+20.k+2 (X421, ©)O.

i=1
By the definition of 5, ,, we obtain

ox
= = k+2
by Xes (x;m - 2 Xiy2
xk+1

ox,, 15)
P ka2 xk+2J(

k41

= (l;k-H +exp(y, 11;k+1 )))_C/Hz Sgn(bk+l)(fk+2 -

= (I;kﬂ + eXp(}’ll;kn ))fmzﬂlmz CAPNCN A
Substituting the estimates (14) and (15) into (13), we con-
clude that

k+1

2-i\ .
m-”Z(C'H_T} +(®+nk+2l())[ k+2,2() ?/}

2

- (‘th,i O+ % exp(ylgkﬂ )l;im ) (giﬁfl + \th,z ())

ox,
by Fvs k+2
T Xp2%043 T X2 Z Xin
o Ox,

i

+ xk+26k+2 Q )®

+X,, exp(7,0 Ak+1 Miea ()
- ox,.,
~ Xtz (7 8@2 I, O+ X0, O, ¢ )]

—Xpp (77k+z (OX SWPE IO} S ()) )
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where

) — a)CZ+2 7/2
k+1 ~ ~
b, v exp(y,b,.)

D A =2
II,.,, (x[k+2]’ 0,b,,,)= IL,.,,0)+%.,0,,,0)

axk+2

Q“)

Vi (x [k+2]> .0,

I (x k+2]7® bk+l) I, () +%.,0)

k+2,1 (x[k+2] > ®, bk+] )= lPk+1,1 ()= X2 ()

ke b)=Y O+ X W, O
Then we can design a smooth controller x, . as fol-

k42,2 (x[k+2]’ 0,

lows:
. _ o o
My T e (C"” +l+oy, ()®) —Xeat z—akﬂ X
= X120k ()é —exp(y, I;k+1 M2 ()

ox, _
+ [7 kiz Hk+1,2 () + X020k (‘)Hk+2,1 ()]

00
+ (77k+2 O O0+y, O, ())
==, (‘x[k+2] ,0, bk+1 ) >
X = X ~ X (16)
Inductive Step (1 > k +2) : Suppose that, at step /, there

@),Ekﬂ) , which is

positive definite and proper, smooth virtual controls

exist a C' Lyapunov function ,(x,,

X3 = 0 (x[k+2] ,0,b,.,) Xy = Xy — XZ+3
. . (17)
X ==, (%,0,0,,) Xp = Xy Xy
and tuning functions
Hl,l (x[z]s 0,b,,,)= T, O+ f120_1 )
0,b,,)=11 &y
zz(xzp ) = /12()+xl 20
\Iju (x[l]’ 0,b.,,)= \Pl—],] ()—xn,0¢)

lPl,z (x[;], 0,h,,))= \PI—I,Z ORSHACH
such that

v, < Z[:,( 1——); ®+n,1())[ (- ]

( 11()+}/ exp(¥, k+l)bk+lJ(bk+l+\P12(')) (18)

+ X%,
We claim that (18) also holds at step /+/. To get this

result, we first consider the Lyapunov function
2

1+1(x[1+1]a® bk+1) V(xl]’® bk+1)+ T

Then, its time derivative along the system (1) is

k
Vi =V +%, 1:xl+2 + [ia () - Z s (xm +/,(0)+g0)
i=1
ax;+l
ox (

k+1

beXea T Sen O+ 80 ()

8x1 . 6x1 LA 8x1 -
- = (X, O+ g () - +® b |-
;2 axi 1 abk+1 o

Note that, since x, -subsystem includes b5, , we

+1°?
have to handle this term carefully.
Estimating uncertain terms, we obtain

)+ a5, a;“ (fO+g.0)

i=l ,'
! )_C-Z
Z .0 e,

i=1

where Ul+1(x[ 1 ©.6,,)20 sa smooth function.

To handle the terms including 4, ,,, we compute

*
X
- I+1
=b, %, Xpi2
k+1

= (I;k+1 +exp(,h;., ))fmnm (x[1+11 > (:)’ b,

(20)

where 5 ()= sgn(b,m)( s ;L) is a smooth function.

Since eXp(?”ll;m) is a positive smooth function, there

exists a smooth function y/, (x[l],@, b,,,) such that
- 8}6+
X I — bk+l X Wi () 4 exp(y, k+1)bk+1 21)
k+1 2

From (19), (20) and (21), it follows that

Vg £ _Z[ +1- }Tiz + ((:) + H1+1,1('))[H/+1,2 ) _%J

- [l{’lﬂ,l )+ % eXP(%[;kn )£k+l J (l;k+1 + lym‘z ()) + X%,

2

« *
L¥ % —% Zk:axm = i . x
T+17142 1+

X — X
i+l 1+1
i=1 axi i=k+2

i+]
#3710, OO+ X, exp(7 by 17 0)

_ | o, _
X (7% ,,()+%,0, O, ()]

—X, (771+1 OY L0+, OF ()) >
(22)
where
x/,y Vs
6bk+1 yiexp(y, k+l)

H1+1,1 (x[1+|] ,0,b,,)= Hl,l O+ x1+1o-/+1 Q]

V/M(x[m 0 bk+1) =
Ox;

(3 ©,b,,) =11, () + X, —&L
[+I ( [+ k 1) 12() 1+1 a@

Y, (x[m] ,0,b,. 0= v, O=%7,,0)
Wi (X[M] 20,6, =Y, ,()+x,p,,,0).
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With the help of (22), the smooth virtual controller is
defined as

* = SR L
X2 = 7 Xy (CM +1+0,, ()®) X+ Z Xit1
i=1 axi
l *

Oox
+ Z 1+1 X,
i=k+2 x,'

= %10, OO —exp(rby )1 ()

ox,, -
+ [7 alél Hl,z () +%.,0., (‘)Hm,l ()j

+ (771+1 O¥,0+y,, O, ()) (23)
=, (x[z+1] > ) bk+1 )

—_— *
X2 = Xpon T Xp5p -

The definition of (23) leads to

, I41-i ) )
Via< _Z(Ci +1- P }?,'2 +(®+H1+1,1 ('))[Hm,z(')_?
P

( 141, 10] + Y eXp(71 k+1)bk+1J(5k+l + lI"l+1,2 ())

+ fl+l)?1+2 *
This completes the inductive proof. Following the in-
ductive steps above, we can decide at step #, that there are
a smooth feedback control

u(x,0,b,)=x,,=-a,(c0.6.) @9
and an adaptive update law
é) IL,, (x, (:39[;1”1)
é=| o |= y, o (25)
h _——"_\Pn,l(x’®’bk+l)
ke 72 exp(7b,.,1)

which render
<-Sei (26)
i=1

From (24)-(26), we can conclude that the closed-loop
system is globally stable. Also, by LaSalle’s invariance
principle, all the bounded trajectories of the system ulti-
mately converge to the largest invariant set in

{(x,@),b,m) DV (x, @,ka) = 0} as t—oo . Finally, we
arrive at
lim|}x(5)] = 0

which completes the proof of Theorem 1.

4. Example

In this section, we consider a system given by
d x, sint

2
+ X,

=x, +In(1+x°67) +
X, =b,x, +0,x, + x, In(1+ d? cos® 1)
X, =u,
where the unknown constants ¢, 4, and the time-

varying disturbances have the flowing relations:
[In(1+x767)| < |6 <[ | 1+ 67,

|x2 In(1+d; cos’ t)’ <|x,||d, cost| < |dy||x,|

and we assume that p, is an unknown positive constant.

AGT <))

While the x,-subsystem includes a nonlinearly param-
eterized term and a time-varying disturbance, the x,-
subsystem includes a linearly parameterized term and a
time-varying disturbance. Note that we assume the bounds
of the disturbances are unknown and the first disturbance
includes 1+x22 as a denominator where we handle this

term by the domination method.
To estimate unknown constants, we define

max{\/1+921,\/1+9§’\/1+d21’\/l+d§} (28)

<\1+6240%+d%+d} =0, ©=0.

Now we design the control u using backstepping
with the domination approach and the new estimation
method.

As proceeded in the proof of Theorem 1, with the con-
tinuously differentiable, proper, and positive definite
Lyapunov function V, = x’/2+®” /2y, we have

X, =X, (cl+1+(:3), X, =%~ X,

. . o

Vi <=(c, +1)x} +x%, +(O+11,,) Hm(xl)—7
where [T, =0 and I , = x’

Next, let the Lyapunov function

V,=V,+X/2a, +b? /2y, where a, is a scaling con-
stant andl;2 = |b, |—exp(;/ll;2). Following the procedure
of step k+1, we obtain

X, = &(b{)[—azz (02 +1+ 0'2(-)(:))—612xl+%x2
exp(7,0,) ox

Ox sgn(b
+7 2H22()jlz:_ gn(h,) az(x[z]»®)
08 exp(y, 2)
X, =x3—x3
And

AL vx, ox A
H2,1 (x[z]a®) - 1—11,1 + a; a@i ’ 2,2 (x[2]9®)

=11,,(x )+ x}0,0)
%0, () —
and Y., (xm,@) = i ¥,,=0.
Finally, we choose the Lyapunov function
V,=V, +x;/2a, where g, is ascaling constant.

After deducing
9, |x3|{| I

Where

8x3

o 200, (x,0)

X +x
—T-+x3

([ +a)
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2 ) \2
o a2 () 13 (o
o,() :ﬁ(a—“) +23732(c1 +24+0) (%) + ol (6’); )
and %, (————) = (bz + eXp(%bz))fmg(xm,@),
7,() = sgn(bz)(j_z_%’é%) we design the control and tun-

ing functions as
u=-ax(c;+1+o, ()(:)) —ay exp(y,b,)m, (")

ox, ox, _
+ 6—3)‘2 +a, (la—én 120+ X001 ()j

X a,
ox,
_ {%——3] ¥.,0)
7 exp(y,b,) 0b,
A - 7,50
0=y H},z(')a b, = _2—3,1A,
exp(y,b,)
which is followed by
V3 <—ox — ¢, X, —o,Xs (29)

The tuning functions have the structure of
Ao < o
REY (x[3] ,0,0,) = szl O+ 75 0%

3

H3,2 (xma @, 52) = Hz,z O+ f3263 )
Yy, (xm ) @, 52) = \112,1 () =x7,0),

A

A oA T o
\PS,Z (xma 0, bz) = \}lz,z () + T B Ce

a} exp(ﬂ/ll;z) 61;2 .

LR a8 %
5 [— wanap O
kS : :
“ . :
\ . .
. . B
> .
S .
a e s “':‘::“;
L
ra .
- :
5 L i
-
D 1 2 3 4 5
hat thets
48 u
D et
a2r .
0 ;
2 i 2 3 4 b
haib,d,
15
a 1 2 3 4 5
time

Fig. 1. Simulation result for example

Fig. 1 shows the simulation result. The parameters are
g=5¢=Lc=Ly=y=1y=4 6=.5d=2,
6,=1,d,=2,b,=2, a,=1, a, =10and the initial condi-
tions are x(0)=[3,-5,4]", ®(0)=0, b,(0)=0. From
the figure, we know that all states are bounded and con-
verge to zero while @(r) and b,(r) are bounded. Espe-
cially, [52 (r) varies very slowly because its dynamics has

exp(¥, Z;z) as a denominator.

5. Conclusion

In this paper, a smooth robust adaptive controller has
been constructed for a class of strict feedback systems
with an unknown virtual control coefficient, nonlinearly
parameterized uncertainties and time-varying disturbances.
The controller and the adaptive update law are obtained by
proposing the novel definition of estimation error for the
virtual control coefficient, and employing the feedback
domination design [14] for the uncertainties and distur-
bance whose bound is unknown. The result reduces the
dimension of the parameter update laws and proposes the
method to handle uncertain nonlinear systems that have
not been considered.

Appendix

Step 1: Consider the Lyapunov function
Vi(x,,8)=x /2+6%/2y. Then, by (5) and (6), we have

V< x(x, +ﬁ(~)+g1('))—®—f

<xx, + x]2 (]71 +g (O —®—7/®

S XX, +x120-1(x1)(:)+C:)[xlzo-](xl)_gja
Y

where ()= fl (x)+g,(x)).
From this result, we get the first virtual control
x, = —(cl +1+0, (-)G)))c1 =0, (X}, 0), (30)
YZ = xz - x:s

which yields
V<=, +1)x + 5%, + (0 +11,, )[nu(.) —9},
v

where 1, =0, IT,,(x) = x/o;(x)
Step 2: Let the Lyapunov function p, (x[zp(:))le(')

+x, / 2. With this selection, we obtain
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V,=Vi+ %t -5 P25+ 026, (31)
0ox, 00
To separate uncertainties, we need to estimate the
terms involving f£,(),i=1,2, and g (9),i=1,2. By (3), (5),

(30), and Young’s inequality ((|ab| < }%Jr\%’ %) + % =1,
0 < p,q € R)), we obtain

@(fz(-)+g2(-))—fz%(ﬁ O+80)

S|7czl(|xlr+lfz—alc)xll){ﬁ(-wgz(-n (32)

0ox,

x(F0+80) )&

X,
1 =2
S7+x2 0'2(x

2, ©)0,

where o () is a non-negative smooth function.
Applying (32) into (31) results in

v, S—(cl +1—ljxf+((:)+H”)[H12(«)—9]
n ’ ’ v

- = _(éx ox;
FXX, XX, X, =2 X, +—20
Ox, 00

+f2202(-)((5)+ (3)).
To get the tuning functions [11], we compute

~ é) _ ax* A _ ~
(® +1T,, )Lnl,z - 7} ) 8(:; 0+X,0,()0

~ 6 _ o, )
={@+I1, ) O,()-— =2 A
( + 1,1){ 120) }/J"‘[?/xz 5@)(1_[1’2() }/J

*

_ Ox _ ~
V% 6_(:;1_[1,2 O+ x220'2 e

= (C:) + Hz,l('))[nl,z Q) _%J —7X, %HI,Z ¢

+ ((:) + Hz,l ()) f220-2 () - f220-2 (')Hll ()

~ (:) &
=(O+I1, (- Y= | =y, 2 :
(©+ 2,1())[H2,2() y] 7% 2,0

- 2220-2 (')H2,1 ()a
where

A _ o,
HZ,I('x[2]7®) = Hl,l +rx, 3@2 >

Hz,z (x[z]f (:)) = Hl,z O+ fzzo-z 0.
This result leads to

Vz < _(cl +1_l)x12 +(®+H2,1('))[H2,2(')_9J
n 4

ox, A

— — — 2 —2

+ X%, + X, X, — X, _x X, +%,0,()0
1

_( ox -
—X (78_5 H1,2 () +x,0, (')Hz,l ()]
and we design the virtual control

- A o, ox,
X, ==X, (c2 +1+ 0'2(-)®)—x1 +—a?1x2 + 7£H1,2(')
+ )_620'2 (')Hz,l ()
=, (x[2]7 0),
From now on, we shall use an inductive argument. For
step 1 to m-1(3<m<k), after a recursive design proce-

— s
X, =X, X,

dure, we have a set of smooth virtual controls
*_ _ *
x =0 X =X —X

— *

X, =-a, (xm’@) Xy =X, =X, (33)

* ol — *
xm = _am~1 (x[mfl]’(a) xm - Xm - x’”

and, with the Lyapunov function y _ =y, +%Z"i Zfiz , We

have the result

I/'vm—l < _f (ci +1- m-1- i);iz + ((:) + Hm—l,l('))(nml,z - %]

n
+X, %,

where Hmil)l(x[m_l],(:)) and 1, ( ®) are tuning

Kom-112

functions for ©.

Step m: We choose a (' Lyapunov function as
V =V ,+%./2. Its time derivative along the

system (1) is

— %+ —2
i=1 axi a®

Using (3), (5), (33), and Young’s inequality, we esti-
mate the uncertain terms as

% (042,007,

s _(wex, . ox, A
V,=V ,+%,%,—X, [ '” -0 |

B (76 +2,0)

xi

<951 31% ((,0+2,0)6, G34)
SEAD)

m-1 2

X _ A
£2j+ﬁ%mw®&
i=1

*_ x|(£0)+20)8,

%
Ox,

where c,()=0 is a smooth function.

By ©=0-6 and
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*

A _ ox
Hm,l (x m)? ®) = Hm—l,l (.) + }/‘xm a(::)”

IL,,, (x[m] s é) =11, ,, )+ friam 0

the virtual control is designed as

* —

n _ m—1 ax*
Xy =X, (c, +1+0,()0) X, + Z X0

=l OX;
ox,, — (36)
+ [7 %Hmfll () + me'm (.)Hm,l ()J
= =, (X, @),
fmﬂ =X x;ﬂ
which is followed by

V < —i[q +1- m;ijgz +(@+ Hm,l(.))(nmgz(.) —%J

This completes the proof of step m.
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