• 제목/요약/키워드: Lyapunov's stability theory

검색결과 46건 처리시간 0.043초

T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화 (T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters)

  • 김재훈;박창우;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.270-275
    • /
    • 2005
  • 본 논문은 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응 동기화 기법을 제안한다. 카오스 동기화 시스템은 마스터 시스템과 슬레이브 시스템으로 구성되며 각각의 시스템은 Takagi-Sugeno (T-S) 퍼지 모델을 통해 표현된다. 마스터 시스템은 파라미터가 미리 알려지지 않은 불확실한 모델로 가정되므로 불확실한 파라미터를 추정하기 위해 적응 기법을 적용하여 슬레이브 시스템을 설계한다. 동기화 오차 시스템을 안정화하고 불확실한 파라미터를 추정하는 적응 규칙을 이용한 제어기를 설계하며 Lyapunov 이론을 통해 안정도를 해석한다. 제안된 퍼지 적응 동기화 기법의 효과를 확인하기 위해서 Duffing 시스템과 Lorenz 시스템에 대해 모의 실험을 수행한다.

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

GLOBAL STABILITY OF A TUBERCULOSIS MODEL WITH n LATENT CLASSES

  • Moualeu, Dany Pascal;Bowong, Samuel;Emvudu, Yves
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1097-1115
    • /
    • 2011
  • We consider the global stability of a general tuberculosis model with two differential infectivity, n classes of latent individuals and mass action incidence. This system exhibits the traditional threshold behavior. There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction ratio $\mathcal{R}_0$, this state can be either endemic ($\mathcal{R}_0$ > 1), or infection-free ($\mathcal{R}_0{\leq}1$). The global stability of this model is derived through the use of Lyapunov stability theory and LaSalle's invariant set theorem. Both the analytical results and numerical simulations suggest that patients should be strongly encouraged to complete their treatment and sputum examination.

The Position and Speed Estimation of Switched Reluctance Motor using Sliding Mode Observer

  • Yang, Lee-Woo;Kim, Bo-Youl;Kim, Jin-Soo;Kim, Young-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.774-779
    • /
    • 1998
  • For the speed control of motors, the position or speed sensors are necessary to obtain the position information of the rotor. Specially, SRM(Switched Reluctance Motor) needs an accurate rotor position data because both the rotor and the stator have a salient pole structure. High functional sensors like resolver or encoder are expensive and have complex connecting lines to the controller so the pure signals are apt to be mixed with noised. In the sight of SRM drives, the high temperature, heavy dust, and the EMI surroundings reduce the reliability of speed and position sensors. Therefore, the speed and position sensorless control algorithms using observer have been accepted widely. In this paper An adaptive sliding observer is described to control the SRM without speed or position sensors. The adaptive sliding observer is set on the basis of variable structure control theory. The sliding surface is constructed by current error terms and this surface guarantees the errors converge to "zero". The stability of observer is affirmed by Lyapunov stability analysis and popov's hyper stability theory.ty theory.

  • PDF

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계 (Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF

시변 시간지연을 가지는 입력제한 시스템의 모델예측제어 (Model Predictive Control for Input Constrained Systems with Time-varying Delay)

  • 이상문
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

유전 알고리듬과 퍼지논리 시스템을 이용한 비선형 시스템의 피드백 선형화 제어 (Feedback linearization control of a nonlinear system using genetic algorithms and fuzzy logic system)

  • 최영길;김성현;심귀보;전홍태
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.46-54
    • /
    • 1997
  • In this paper, we psropose the feedback linearization technique for a nonlinear system using genetic algorithms (GAs) and fuzzy logic system. The proposed control scheme approximates the nonlinear term of a nonlinear system using the fuzzy logic system and computes the control input for cancelling the nonlinear term. Then in the fuzzy logic system, the number and shape of membership function of the premise aprt will be tuned to minimize the control error boundary using GAs. And the parameters of the consequence of fuzzy rule will be tuned by the adaptive laws based on lyapunov stability theory in order to guarantee the closed loop stability of control system. The evolution of fuzzy logic system is processed during the on-line adaptive control. The effectiveness of proposed method will be demonstrated by computer simulation of simple nonlinear sytem.

  • PDF

시간지연과 입력포화를 갖는 T-S 퍼지 카오스 시스템의 동기화 (Synchronization of T-S Fuzzy Chaotic System with Time-Delay and Input Saturation)

  • 김재훈;신현석;김은태;박민용
    • 전자공학회논문지SC
    • /
    • 제42권1호
    • /
    • pp.13-21
    • /
    • 2005
  • 본 논문에서는 시간지연과 입력포화를 갖는 카오스 시스템에 대한 퍼지 모텔 기반의 동기화 기법을 제안한다. 시간지연을 갖는 카오스 마스터 시스템과 슬레이브 시스템을 모델링하기 위해 Takagi-Sugeno(T-S) 퍼지 모델을 이용한다. 특히 슬레이브 시스템은 제어 입력이 제한되는 입력포화 특성을 갖는다고 가정한다. 선형 오차 피드백과 병렬 분상 보상(PDC) 방법에 따라 퍼지 카오스 동기화 시스템을 설계하고 동기화 오차 시스템의 국소 안정도 조건을 해석한다. 신호 전송 채널에는 시간지연이 항상 존재하므로 채널 시간지연 또한 고려한다. 입력포화와 시간지연을 갖는 퍼지 동기화 시스템의 국소 안정도에 대한 충분 조건은 Lyapunov-Krasovskii 이론을 적용하여 선형 행렬 부등식 (LMI) 문제의 해를 통해 얻어진다. 제안된 동기화 기법의 효과를 확인하기 위해서 모의 실험을 수행한다.

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF