Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.4.617

Smart tracking design for aerial system via fuzzy nonlinear criterion  

Wang, Ruei-yuan (School of Science, Guangdong University of Petrochemical Technology)
Hung, C.C. (Department of Mechanical Engineering, National Taiwan University, Taipei & Faculty of National Hsin Hua Senior High School)
Ling, Hsiao-Chi (School of Information, Kainan University)
Publication Information
Smart Structures and Systems / v.29, no.4, 2022 , pp. 617-624 More about this Journal
Abstract
A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.
Keywords
adaptive fuzzy system; disturbance-observer-based control; Lyapunov energy function; unmanned aerial vehicle;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Chen, T., Morozov, S.N. and Chen, C.Y.J. (2019), "Hazard Data Analysis for Underwater Vehicles by Submarine Casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2   DOI
2 Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D. and Chiang, W.L. (2005a), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Transact. Circuits Syst. I: Regular Papers, 52(9), 1883-1893. https://doi.org/10.1109/TCSI.2005.852492   DOI
3 Kim, M., Joe, H., Kim, J. and Yu, S.C. (2015), "Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances", Int. J. Control, 88(10), 2055-2065. https://doi.org/10.1080/00207179.2015.1031182   DOI
4 Chen, T., Kapron, N. and Chen, J.Y. (2020a), "Using evolving ANN-based algorithm models for accurate meteorological forecasting applications in Vietnam", Mathe. Probl. Eng., 8179652. https://doi.org/10.1155/2020/8179652   DOI
5 Chen, C.W., Lin, C.L., Tsai, C.H., Chen, C.Y. and Yeh, K. (2007b), "A novel delay-dependent criterion for time-delay TS fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell. Tools, 16, 545-552. https://doi.org/10.1142/S0218213007003400   DOI
6 Chen, C.W. (2014b), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9   DOI
7 Chen, C.Y.J., Chen, T., Huang, Y.C., Hung, C.C., Frias, S. and Muhammad, J.A. (2021g), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., Int. J., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917   DOI
8 Hung, C.C., Chen, T., Abi Astolfi, A., Rao, S.R., Young, H.T., Wutim, C. and Chen, C.Y.J. (2019), "Optimal fuzzy design of Chua's circuit system", Int. J. Innov. Comput. Inform. Control, 15(6), 2355-2366.
9 Chen, T. and Chen, C.Y.J. (2019a), "Meteorological Tidal Predictions in the Mekong Estuary Using an Evolved ANN Time Series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3   DOI
10 Chen, T. and Chen, J.C.Y. (2019c), "Decentralized fuzzy C-Means robust algorithm for continuous systems", Aircr. Eng. Aerosp. Technol., 92(2), 222-228. https://doi.org/10.1108/AEAT-04-2019-0082   DOI
11 Chen, C.Y., Lin, J.W., Lee, W.I. and Chen, C.W. (2010), "Fuzzy control for an oceanic structure: a case study in time-delay TLP system", J. Vib. Control, 16, 147-160. https://doi.org/10.1177/1077546309339424   DOI
12 Chen, T., Morozov, S.N. and Chen, C.Y.J. (2019), "Hazard Data Analysis for Underwater Vehicles by Submarine Casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2   DOI
13 Chen, C.W., Yeh, K., Chiang, W.L., Chen, C.Y. and Wu, D.J. (2007a), "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", J. Vib. Control, 13, 1519-1534. https://doi.org/10.1177/1077546307073690   DOI
14 Chen, T., Hung, C.C., Huang, Y.C., Chen, J.C., Rahman, S. and Mozumder, T.I. (2021h), "Grey signal predictor and fuzzy controls for active vehicle suspension systems via Lyapunov theory", Int. J. Comput. Commun. Control, 16(3), 3991. https://doi.org/10.15837/ijccc.2021.3.3991   DOI
15 Campa, G., Innocenti, M. and Nasuti, F. (1998), "Robust control of underwater vehicles: sliding mode control vs. mu synthesis", Proceedings of OCEANS '98 Conference, Vol. 2, 16401644.
16 Chawla, K.K. (2012), Fatigue and Creep, (3rd Edition), Springer, New York.
17 Chen, C.W. (2007), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simul., 80, 402-426. https://doi.org/10.1016/j.matcom.2009.08.001   DOI
18 Chen, Z.Y., Meng, Y. and Chen, T. (2021i), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl., 193, 115873. https://doi.org/10.1016/j.eswa.2021.115873   DOI
19 Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Systematic fuzzy navier-stokes equations for aerospace vehicles", Aircr. Eng. Aerosp. Technol., 94(3), 351-359. https://doi.org/10.1108/AEAT-06-2020-0109   DOI
20 Chen, C.W., Chiang, W.L., Tsai, C.H., Chen, C.Y. and Wang, M.H. (2006), "Fuzzy Lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tools, 15, 163-172. https://doi.org/10.1142/S0218213006002618   DOI
21 DeBitetto, P.A. (1995), "Fuzzy logic for depth control of unmanned undersea vehicles", IEEE J. Oceanic Eng., 20(3), 242-248. https://doi.org/10.1109/48.393079   DOI
22 Chen, T., Dkuo, N.J. and Chen, C.Y.J. (2020b), "A composite control for UAV systems with time delays", Aircr. Eng. Aerosp. Technol., 92(7), 949-954. https://doi.org/10.1108/AEAT-11-2019-0219   DOI
23 Chen, T., Lohnash, M., Owens, E. and Chen, C.Y.J. (2020c), "PDC Intelligent control-based theory for structure system dynamics", Smart Struct. Syst., Int. J., 25(4), 401-408. https://doi.org/10.12989/sss.2020.25.4.401   DOI
24 Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021a), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, Int. J., 28(4), 433-440. https://doi.org/10.12989/cac.2021.28.4.433   DOI
25 Cheng, J. (2021), "Grey FNN control and robustness design for practical nonlinear systems", J. Eng. Res. https://doi.org/10.36909/jer.11273   DOI
26 Choi, B.J., Kwak, S.W. and Kim, B.K. (2000), "Design and stability analysis of single input fuzzy logic controller", IEEE Transact. Syst. Man Cybernet. Part B (Cybernetics), 30(2), 303-309. https://doi.org/10.1109/3477.836378   DOI
27 Deshpande, V.S. and Phadke, S.B. (2011), "Control of uncertain nonlinear systems using an uncertainty and disturbance estimator", ASME. J. Dyn. Syst., Meas., 134(2), 024501-024507. https://doi.org/10.1115/1.4005042   DOI
28 Feng, Z. and Allen, R. (2004), "Reduced order H∞ control of an autonomous underwater vehicle", Control Eng. Practice, 12(12), 1511-1520. https://doi.org/10.1016/j.conengprac.2004.02.004   DOI
29 Goheen, K.R. and Jefferys, E.R. (1990), "Multivariable self-turning autopilots for autonomous remotely operated underwater vehicles", IEEE J. Oceanic Eng., 15(3), 144-151. 10.1109/48.107142   DOI
30 Kumar, R.P., Dasgupta, A. and Kumar, C.S. (2007), "Robust trajectory control of underwater vehicles using time delay control law", Ocean Eng., 34(5-6), 842-849. https://doi.org/10.1016/j.oceaneng.2006.04.003   DOI
31 Naik, M.S. and Singh, S.N. (2007), "State-dependent Riccati equation-based robust dive plane control of AUV with control constraints", Ocean Eng., 34(11), 1711-1723. https://doi.org/10.1016/j.oceaneng.2006.10.014   DOI
32 Li, J.H. and Lee, P.M. (2005), "Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle", Ocean Eng., 32(17), 2165-2181. https://doi.org/10.1016/j.oceaneng.2005.02.012   DOI
33 Londhe, P.S., Santhakumar, M., Patre, B.M. and Waghmare, L.M. (2017), "Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme", IEEE J. Oceanic Eng., 42(1), 13-28. https://doi.org/10.1109/JOE.2016.2548820   DOI
34 Mohammadi, A., Tavakoli, M., Marquez, H.J. and Hashemzadeh, F. (2013), "Nonlinear disturbance observer design for robotic manipulators", Control Eng. Practice, 21(3), 253-267. https://doi.org/10.1016/j.conengprac.2012.10.008   DOI
35 Santhakumar, M. and Asokan, T. (2010), "Investigations on the hybrid tracking control of an underactuated autonomous underwater robot", Adv. Robot., 24(2), 1529-1556. https://doi.org/10.1163/016918610X512587   DOI
36 Silvestre, C., Pascoal, A. and Kaminer, I. (2002), "On the design of gain scheduled trajectory tracking controllers", Int. J. Robust Nonlinear Control, 12(9), 797-839. https://doi.org/10.1002/rnc.705   DOI
37 Chen, T., Kuo, D., Huiwi, M., Gong-Yo, T. and Chen, J.Y. (2021f), "Evolved predictive vibration control for offshore platforms based on the Lyapunov stability criterion", Ships Offshore Struct., 16(7), 700-713. https://doi.org/10.1080/17445302.2020.1776548   DOI
38 Chen, Z.Y., Huang, L., Wu, H., Meng, Y., Xiang, S. and Chen, T. (2021b), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
39 Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021c), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech., Int. J., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131   DOI
40 Chen, T., Kapronand, N., Hsieh, C.Y. and Chen, J.C. (2021e), "Evolved auxiliary controller with applications to aerospace", Aircr. Eng. Aerosp. Technol., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233   DOI
41 Chen, C.W. (2009), "Modeling and control for nonlinear structural systems via a NN-based approach", Expert Syst. Appl., 36, 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062   DOI
42 Tsai, P.W. (2012a), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134   DOI
43 Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021d), "Active TMD systematic design of fuzzy control and the application in high-rise buildings", Earthq. Struct., Int. J., 21(6), 577-585. https://doi.org/10.12989/eas.2021.21.6.577   DOI
44 Tsai, P.W. (2012b), "A novel strategy to determine the insurance and risk control plan for natural disaster risk management", Natural Hazards, 64, 1391-1403. https://doi.org/10.1007/s11069-012-0305-3   DOI
45 Tsai, P.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., Int. J., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385   DOI
46 Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641   DOI
47 Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439   DOI
48 Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., Int. J., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201   DOI
49 Jalving, B. (1994), "The NDRE-AUV flight control system", IEEE J. Oceanic Eng., 19(4), 497-501. https://doi.org/10.1109/48.338385   DOI
50 Kim, D.W. (2015), "Tracking of REMUS autonomous underwater vehicles with actuator saturations", Automatica, 58(2), 15-21. https://doi.org/10.1016/j.automatica.2015.04.029   DOI
51 Chen, C.W. (2011b), "Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method", Neural Comput. Applicat., 20, 527-534. https://doi.org/10.1007/s00521-011-0576-8   DOI
52 Chen, C.Y.J. (2020), "System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems", Smart Struct. Syst., Int. J., 26(6), 797-807. https://doi.org/10.12989/sss.2020.26.6.797   DOI
53 Chen, Z.Y. (2022), "Stochastic intelligent GA-NN controller design for active TMD shear building", Struct. Eng. Mech., Int. J., 81(1), 51-57. https://doi.org/10.12989/sem.2022.81.1.051   DOI
54 Chen, T. and Chen, C.Y.J. (2019), "Meteorological Tidal Predictions in the Mekong Estuary Using an Evolved ANN Time Series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3   DOI
55 Levant, A. (1998), "Robust exact differentiation via sliding mode technique", Automatica, 34(3), 379-384. https://doi.org/10.1016/S0005-1098(97)00209-4   DOI
56 Chen, C.W. (2005), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw., 37, 624-629. https://doi.org/10.1016/j.advengsoft.2005.12.002   DOI
57 Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., Int. J., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363   DOI
58 Chen, T. and Chen, C.Y.J. (2020), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", Transact. Inst. Measur. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383   DOI
59 Chen, T. and Cheng, C.Y.J. (2019b), "Modelling and verification of an automatic controller for a water treatment mixing tank", Desalin. Water Treat., 159, 318-326. https://doi.org/10.5004/dwt.2019.24143   DOI
60 Lakhekar, G.V. and Waghmare, L.M. (2017), "Robust maneuvering of autonomous underwater vehicle:an adaptive fuzzy PI sliding mode control", Intell. Serv. Robot., 10(3), 195-212. https://doi.org/10.1007/s11370-017-0220-2   DOI
61 Fossen, T.I. (1994), Guidance and Control of Ocean Vehicles, John Wiley and Sons, pp. 448-451.
62 Chen, C.W. (2011a), "Stability analysis and robustness design of nonlinear systems: An NN-based approach", Appl. Soft Comput., 11, 2735-2742. https://doi.org/10.1016/j.asoc.2010.11.004   DOI
63 Chen, C.W. (2014a), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8   DOI
64 Moura, A., Rijo, R., Silva, P. and Crespo, S. (2010), "A multi-objective genetic algorithm applied to autonomous underwater underwater vehicles for sewage outfall plume dispersion observations", Appl. Soft Comput., 10(4), 1119-1126. https://doi.org/10.1016/j.asoc.2010.05.009   DOI
65 Chen, C.W., Yeh, K. and Liu, K.F.R. (2009a), "Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation", Int. J. Uncertain. Fuzziness Knowl. Based Syst., 17, 705-727. https://doi.org/10.1142/S0218488509006224   DOI
66 Chen, C.Y., Shen, C.W., Chen, C.W., Liu, K.F.R. and Cheng, M.J. (2009b), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Eng., 23, 49-57.
67 Chen, C.W., Shen, C.W., Chen, C.Y. and Cheng, M.J. (2011a), "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Computat., 27, 186-204. https://doi.org/10.1108/02644401011022364   DOI
68 Chen, C.W., Chen, P.C. and Chiang, W.L. (2011b), "Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach", J. Vib. Control, 17, 1241-1252. https://doi.org/10.1177/1077546309352827   DOI
69 Geranmehr, B. and Nekoo, S.R. (2015), "Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation", Ocean Eng., 96(1), 248-257. https://doi.org/10.1016/j.oceaneng.2014.12.032   DOI
70 Hsiao, F.H., Hwang, J.D., Chen, C.W. and Tsai, Z.R. (2005b), "Robust stabilization of nonlinear multiple time-delay largescale systems via decentralized fuzzy control", IEEE Trans. Fuzzy Syst., 13, 152-163. https://doi.org/10.1109/TFUZZ.2004.836067   DOI
71 Yeh, K., Chen, C.Y. and Chen, C.W. (2007), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comput., 205, 568-577. https://doi.org/10.1016/j.amc.2008.05.104   DOI
72 Pisano, A. and Usai, E. (2004), "Output-feedback control of an underwater vehicle prototype by higher-order sliding modes", Automatica, 40(9), 1525-1531. https://doi.org/10.1016/j.automatica.2004.03.016   DOI
73 Varvani-Farahani, H. and Mivehchi, A. (2011), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7   DOI
74 Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804   DOI