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GLOBAL STABILITY OF A TUBERCULOSIS MODEL WITH n

LATENT CLASSES†

DANY PASCAL MOUALEU, SAMUEL BOWONG∗, YVES EMVUDU

Abstract. We consider the global stability of a general tuberculosis model
with two differential infectivity, n classes of latent individuals and mass
action incidence. This system exhibits the traditional threshold behavior.
There is always a globally asymptotically stable equilibrium state. De-
pending on the value of the basic reproduction ratio R0, this state can be
either endemic (R0 > 1), or infection-free (R0 ≤ 1). The global stabil-
ity of this model is derived through the use of Lyapunov stability theory
and LaSalle’s invariant set theorem. Both the analytical results and nu-
merical simulations suggest that patients should be strongly encouraged to
complete their treatment and sputum examination.
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1. Introduction

Tuberculosis (TB) is primarily a disease of the respiratory system with vari-
able degrees of infectiousness. It can follow after infection by the airborne bac-
teria germ Mycobacterium tuberculosis. Bacilli only live in the air for approxi-
mately 2 hours so individuals who have intense contacts with TB bacilli in poorly
ventilated areas are the most likely to become infected. Thus, TB morbidity and
mortality rates are strongly affected by living conditions. Infectiousness of the
source case, duration and frequency of exposure, and characteristics of shared
environments, all contribute to the overall risk of transmission [1-8]. It is also
known that factors such as endogenous reactivation, emergence of multi-drug
resistant TB, and increase in HIV incidence in the recent years call for improved
control strategies for TB. Another issue that is essential to the epidemiology
of TB is exogenous re-infections, where a latently-infected individual acquires a

Received December 20, 2010. Revised March 22, 2011. Accepted April 2, 2011. ∗Corresponding

author. †UMI 209 IRD/UPMC UMMISCO, Bondy, Projet MASAIE INRIA Grand Est, France,

Projet GRIMCAPE, LIRIMA, Yaoundé, Cameroun.
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new infection from another infectious (see [7] and references therein). A number
of theoretical studies have been carried out on the mathematical modelling of
TB transmission dynamics [8-12].

On the other hand, it is well known that the duration of latency varies greatly
from case to case [9]. It is possible for a infected human to become active within
a few months of infection. It is also possible that activation may occur several
years or decades after exposure has taken place. Until such time, the individual
suffers no ill-effects of the disease, and cannot transmit the disease to others
[9,10]. Also, the risk of activation seems to decrease over time [1,10]. One way
in which this can be modeled is to include a sequence of several latent classes
through which latently infected individuals can pass. Each latent class can be
assigned its own activation rate.

However, TB infected individuals, generally classified as “infective”, play a
major role in the transmission of TB. In this work, we divided the infective class
into two subgroups with different properties: infectious and lost sight. Indeed,
in sub-Saharan Africa, some infectious that begun their effective therapy in the
hospital never return to the hospital during for the rest of sputum examinations
and check-up. This can be due to negligence, lack of information about TB, long
duration of treatment regimen, poverty, mentality, etc... In this case, the health
personal do not know their epidemiological status, i.e., if they died, recovered or
are still infectious. These infective individuals are called lost sight [6]. According
to the National Committee of Fight against Tuberculosis of Cameroon [11], about
10% of infectious individuals that begun their therapy of treatment never return
to the hospital for the rest of sputum examinations and treatment, and then
become lost sight. Thus, this lack of epidemiological status of some patients can
affect the spread of TB in a population.

In this paper, we explore the role of the lack of epidemiological status of
some patients in the hospital on the transmission dynamics of tuberculosis by
formulating a mathematical model taking into cognisance the variability of the
duration of latency and that some lost sight are still infectious. This tuberculosis
model has two differential infectivity and n latent classes. Comparing to existing
results [2-8], our work differs from these studies in that our model in addition
to lost sight, also considers the aspects of disease relapse as well as primary
active TB cases and the variation of the duration of latency. We completely
analyze the stability behavior of the model. The global dynamics of the model
is resolved through the use of Lyapunov functions. We use the same Lyapunov
functions as those used recently in Refs. [6,12-16] to demonstrate the global
stability of the endemic equilibrium of SEIR, SEIS, and SIR models. However,
to our knowledge, no studies so far have described TB with differential infectivity
and n latent classes. Numerical studies are presented to validate the analytical
results.
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2. The model

We consider a finite population of N people. We assume that latently infected
individuals (inactive TB) have variable (typically long) latency period. At any
given time, an individual is in one of the following states: susceptible, latently
infected with n stages (i.e., exposed to TB but are not infectious), infectious in-
dividuals (i.e., have active TB), lost sight (i.e., the health personal do not know
their epidemiological status) and recovered (i.e., cured after a therapy of treat-
ment). We denote these states by S, E, I, L and R, respectively. All recruitment
is into the susceptible class, and occurs at a constant rate Λ. Transmission of M.
tuberculosis occurs following adequate contacts between a susceptible individual
and infectious or lost sight individuals. After adequate contacts with infectious
or lost sight individuals, a susceptible individual becomes infected but not yet
infectious. This individual remains in the latently infected classes for a certain
latent period through n stages E1, . . . , En. We use the standard mass balance
incidence expressions β1SI and β2SL to indicate successful transmission of M.
tuberculosis due to nonlinear contact dynamics in the population. Once latently
infected with M. tuberculosis, an individual will remain so for life unless reactiva-
tion occurs. We assume that chemoprophylaxis of latently infected individuals
reduces their reactivation at a constant rate ri. Latently infected individuals
who do not received effective chemoprophylaxis progress to the next stage of
latently infected class with a constant rate ki(1− ri). We assume that latently
infected individuals leave the subclass Ei to the infectious class I at a constant
rate αi. After receiving an effective therapy, infectious individuals can recover
from the disease with a constant rate r and entering the recovered class R. As
suggested by Styblo [24], recovered individuals still have the bacterium in their
body and can undergo a reactivation of the disease with a constant rate γ. We
also assume that among infectious individuals who do not recovered, some of
them who begun their treatment will not return to the hospital during their
period of treatment for the examination of sputum at a constant rate φ(1 − r)
and enters the lost sight class L. After some time, some of them will continue
to suffer of the disease and will return to the hospital at a constant rate δ and
the remaining can recover because of natural recover and traditional medicine
(practiced in sub-Saharan Africa) at a constant rate ε(1 − δ) and enters the
recovered class R. Individuals with active TB induce a death rate µ, thus 1/µ
is the average lifespan. Latently infected, infectious and lost sight individuals
have addition death rates due to infection and disease with constant rates di, dI
and dL, respectively.

Thus, the corresponding transfer diagram is
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Figure 1. A transfer diagram for a TB model with two dif-
ferential infectivity and n latent classes.

The corresponding equations are




Ṡ = Λ− S(β1I + β2L)− µS,

Ė1 = S(β1I + β2L)− [µ+ d1 + α1 + k1(1− r1)]E1,

...

Ėi = ki−1(1− ri−1)Ei−1 − [µ+ di + αi + ki(1− ri)]Ii, i = 2, . . . , n− 1,

...

Ėn = kn−1(1− rn−1)En−1 − [µ+ dn + αn]En,

İ =

n∑
i=1

αiEi + γR+ δL− [µ+ dI + r + φ(1− r)]I,

L̇ = φ(1− r)I − [µ+ dL + δ + ε(1− δ)]L,

Ṙ = rI + ε(1− δ)L− (µ+ γ)R.

(1)

3. Properties of the model

System (1) can be written in the following compact form:
{
ẋ = ϕ(x)− x〈β | y〉,
ẏ = x〈β | y〉B +Ay,

(2)

where x = S ∈ R≥0 is a state representing the compartment of non transmitting

individuals (susceptible), y = (E1, · · · , En, I, L,R)T ∈ Rn+3
≥0 is the vector repre-

senting the state compartment of different infected individuals (latently-infected,
infectious, lost sight and recovered individuals), ϕ(x) = Λ−µx is a function that
depends on x, β = (0, · · · , 0, β1, β2, 0) ∈ Rn+3 and B = (1, 0, · · · , 0)T ∈ Rn+3,
〈. | .〉 is the usual scalar product in Rn+3

≥0 and A is a (n+ 3)× (n+ 3) constant
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matrix defined as

A =




−a1 . . . 0 0 0 0 0
k1(1− r1) . . . 0 0 0 0 0

...
. . .

...
...

...
...

...
0 . . . kn−1(1− rn−1) −an 0 0 0
α1 . . . · · · αn −aI δ γ
0 . . . . . . 0 φ(1− r) −aL 0
0 . . . . . . 0 r ε(1− δ) −aR




,

with

ai = µ+ di + αi + ki(1− ri), i = 1, · · · , n− 1, an = µ+ dn + αn,
aI = µ+ dI + r + φ(1− r), aL = µ+ dL + δ + ε(1− δ) and aR = µ+ γ.

It should be pointed out that A is a Metzler matrix, that is, a matrix with
off-diagonal entries nonnegative [16-18].

3.1. Positivity and boundedness of solutions. For system (1) to be epi-
demiologically meaningful, it is important to prove that all its state variables are
non-negative for all time. In other word, solutions of system (1) with positive
initial data remain positive for all time t > 0. This can be verified as follows.
Suppose, for example, the variable E1 becomes zero for some time t̄ > 0 , i.e.,
E1(t̄) = 0, while all other variables are positive. Then, from the E1 equation,
we have dE1(t̄)/dt > 0. Thus, E1(t) ≥ 0 for all t > 0. Similarly, it can be shown
that all variables remain nonnegative for all t > 0.

3.2. Invariant region. Model system (1) will be analyzed in a suitable region
as follows. That is all solutions are uniformly bounded in a proper subset Ωρ ⊂
Rn+3

≥0 . Let (S,Ei, I, L,R) ∈ Rn+3
≥0 be any solution with non-negative initial

conditions.
Model system (1) has a varying population size (N = 0) and therefore a trivial

equilibrium is not feasible. Adding all equations in the differential system (1)
gives

Ṅ(t) = Λ− µN(t)− d1 I(t)− d2 L(t). (3)

From Eq. (3), one can deduce that Ṅ(t) ≤ Λ − µN(t). It then follows that

lim
t→+∞

N(t) ≤ Λ

µ
which implies that the trajectories of model (1) are bounded.

On the other hand, from Eq. (3), one has N(t) ≤ N(0)e−µt +
Λ

µ
(1 − e−µt). In

particular N(t) ≤ Λ

µ
if N(0) ≤ Λ

µ
. Then, the region:

Ωρ =

{
(S,Ei, I, R, L) ∈ Rn+4

≥0 , N(t) ≤ Λ

µ
+ ρ

}
, (4)

is a compact forward invariant set for system (1) and that for ρ > 0 this set is
absorbing. So, we limit our study to this region for ρ > 0.
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3.3. Local stability of the disease-free equilibrium (DFE). System (2)
has an evident equilibrium P0 = (x0, 0) with x0 = Λ/µ when there is no disease.
This equilibrium point is the disease free equilibrium. We calculate the basic
reproduction number, R0, using the next generation approach, developed by
van den Driessche and Watmough [19]. Using the technique reported in [19], the
basic reproduction number of system (2) is

R0 = x0〈β | (−A−1)B〉. (5)

We use the expression of (−A−1) to put the emphasis on the fact that (−A−1) ≥
0 because the matrix A is Metzler stable. Using the expressions of β and B de-
fined as in Eq. (2) and after the computation of (−A−1), the basic reproduction
number (5) may be rewritten as

R0 =
aR R1

0[β1 aL + β2 φ(1− r)]x0

φ(1− r)R2
0 + aL [(µ+ γ)(µ+ dI) + µ r]

, (6)

where

R1
0 =

α1

a1
+

n∑

i=2


αi

i−1∏
l=1

kl(1− rl)

i∏
j=1

aj


 and R2

0 = µ[µ+ dL + ε(1− δ)] + γ(µ+ dL).

Now, let us determine, using the threshold quantity R0, whether or not lost
sight can influence the propagation of tuberculosis in the host population. From
Eq. (6), it is evident that

lim
φ→1

R0 =
aR R1

0[β1 aL + β2 (1− r)]x0

(1− r)R2
0 + aL [(µ+ γ)(µ+ dI) + µ r]

> 0, (7)

where R1
0 and R2

0 are defined as in Eq. (5). Thus, a sufficiently effective TB
treatment program can lead to effective disease control if it results in making
the right-hand side of (7) less than unity.

Further sensitivity analysis on the rate at which infectious individuals become
lost sight is carried out by computing the partial derivative of R0 with respect
to the parameter φ giving

∂R0

∂φ
=

aRaLR1
0x0[β2 [(µ+ γ)(µ+ dI) + µ r]− β1R2

0]

[φ(1− r)R2
0 + aL [(µ+ γ)(µ+ dI) + µ r]]2

. (8)

From the above equation,
∂R0

∂φ
< 0 if

β2 < ∆ =
β1R2

0

(µ+ γ)(µ+ dI) + µ r
. (9)

Thus, the rate at which infectious individuals become lost sight will have positive
impact in reducing the propagation of TB only if β2 < ∆. Such a rate at which
infectious individuals become lost sight will fail to reduce TB propagation if
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β2 = ∆, and will have detrimental impact in the host population (increase R0)
if β2 > ∆. This result is summarized below:

Lemma 3.1. The rate at which infectious individuals become lost sight φ will
have a positive impact if β2 < ∆, no impact if β2 = ∆ and will have a detrimental
impact if β2 > ∆ on the propagation of TB in the host population.

It is worth emphasizing that the quantity ∆ decreases when the treatment
rate of infectious individuals r increases. So, this quantity can be make as small
as possible by increasing the treatment rate of infectious individuals. Note that
if condition (9) do not hold (this corresponds to lower values of the treatment
rate), then the use of the corresponding treatment strategy would increase TB
propagation in the host population (since R0 > 1). That is, the use of drug will
increase the disease propagation if it fails to reduce the infectiousness of those
treated below a certain threshold (β2 < ∆). So, the best way to control the
disease is to take care of all infectious individuals in health centers to avoid lost
sight and then to increase the successful of treatment. This is, not the case in
developing countries where the organization of health centers is practically non
existent.

The following result is established (from Theorem 2 of [19]):

Lemma 3.2. The disease-free equilibrium Q0 of system (1) is locally asymptot-
ically stable whenever R0 < 1, and unstable if R0 > 1.

Biologically speaking, Lemma 3.2 implies that TB can be eliminated from the
community (when R0 < 1) if the initial size of the population of the model are
in the basin of attraction of P0.

3.4. Equilibria. Let P ∗ = (x∗, y∗) be the positive endemic equilibrium of sys-
tem (2). Then, the positive endemic equilibrium (steady state with y∗ > 0) can
be obtained by setting the right hand side of all equations in system (2) equal
to zero, that is, {

ϕ(x∗)− x∗〈β | y∗〉 = 0,
x∗〈β | y∗〉B +Ay∗ = 0.

(10)

From the second equation of Eq. (10), one has y∗ = x∗(−A−1)B〈β | y∗〉. Then,
one can deduce that

〈β | y∗〉 = x∗〈β | (−A−1)B〉〈β | y∗〉.
The case 〈β | y∗〉 = 0 implies that ϕ(x∗) = 0 and −Ay∗ = 0. Since A is nonsin-
gular, this gives the disease-free equilibrium P0. For the other case, simplifying
by 〈β | y∗〉 gives

x∗ =
1

〈β | (−A−1)B〉 =
x0

R0
> 0.

With R0 > 1, one has x∗ < x0, ϕ(x
∗) > 0 and

y∗ = (−A−1)B ϕ(x∗).
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Hence, system (2) has a unique endemic equilibrium P ∗ = (x∗, y∗) where x∗ and
y∗ are given by

x∗ =
1

〈β | (−A−1)B〉 and y∗ = (−A−1)B ϕ(x∗). (11)

Using the expressions of β and B defined as in Eq. (2) and the expression of
(−A−1) obtained after a calculation, the endemic equilibrium of system (1) is
given by





S∗ =
Λ

µR0
, E∗

1 =
Λ(R0 − 1)

a1R0
,

E∗
i =

i−1∏
l=1

kl(1− rl)

i∏
j=2

aj

Λ(R0 − 1)

a1R0
, for i = 2, 3, · · · , n,

I∗ =
aLµ(R0 − 1)

β1 aL + β2 φ(1− r)
, L∗ =

φ(1− r)µ(R0 − 1)

β1 aL + β2 φ(1− r)
,

R∗ =
µ[r aL + ε(1− δ)φ(1− r)](R0 − 1)

aR [β1 aL + β2 φ(1− r)]
.

(12)

3.5. Global stability of the disease-free equilibrium. We have the follow-
ing result about the global stability of the disease-free equilibrium P0.

Theorem 3.3. If R0 ≤ 1, system (1) has no positive equilibrium states and the
disease-free equilibrium P0 is globally asymptotically stable in Ωρ.

Proof. Consider the following LaSalle-Lyapunov candidate function:

V (x, y) =
1

x0
(x− x0 ln x) + βT (−A−1) y − 1

x0
(x0 − x0 ln x0). (13)

It is easy to see that at the disease free equilibrium P0, the fonction V (x, y)
reaches its global minimum in Ωρ, and hence V (x, y) is a Lyapunov function
since we know that βT (−A)−1 > 0. Its time derivative along the trajectories of
system (2) satisfies

V̇ (x, y) =
1

x0

[
ϕ(x)− x〈β | y〉 − x0

x
ϕ(x) + x0〈β | y〉

]
− βT A−1 x〈β | y〉B − βT y

=
1

x0

[
(x− x0)

x
ϕ(x)− xβT y + x0 β

T y

]
− xβT y βT A−1 B − βT y

=
(x− x0)

x0 x
ϕ(x)− xβT y

x0
− xβT y

R0

x0
=

(x− x0)

x0 x
ϕ(x) +

xβT y

x0
(R0 − 1).

(14)

Recalling that at the disease-free equilibrium, one has Λ = µx0. With this in
mind, Eq. (14) becomes

V̇ (x, y) =
−µ(x− x0)

2

x0 x
+

x

x0
(β1 I + β2 L)(R0 − 1). (15)

Thus, R0 ≤ 1 ensures that V̇ (x, y) ≤ 0 for all x, y ≥ 0, and that V̇ (x, y) =
0 holds when R0 = 1 for x = x0. It is easy to verify that the disease-free
equilibrium state P0 is the only fixed point of the system in the space x = x0,
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and hence, system (2) has no equilibria in Ωρ apart from P0. Then, by the
Lyapunov-LaSalle’s asymptotic stability theorem [20-22], the equilibrium state
P0 is globally asymptotically stable in Ωρ and then in the nonnegative orthant

Rn+4
≥0 (see [22], Theorem 3.7.11, page 346). This achieves the proof. ¤

3.6. Global stability of the endemic equilibrium. The global stability of
the endemic equilibrium is given by the Theorem 3.4, stated above.

Theorem 3.4. If R0 > 1, the positive endemic equilibrium state P ∗ of model
system (1) defined in Eq. (12) is globally asymptotically stable on the set Ωρ

whenever

L∗

L
≤ R∗

R
≤ I∗

I
≤ 1 and

E∗
i+1

Ei+1
≤ I∗

I
≤ E∗

i

Ei
≤ 1, i = 1, . . . , n− 1. (16)

Proof. Consider the following Lyapunov function:

U(S,Ei, L,R) = (S − S∗ lnS) +
n∑

i=1

Ai(Ei − E∗
i lnEi) +B(I − I∗ ln I)

+ C(L− L∗ lnL) +D(R−R∗ lnR),

(17)

where

A1 = 1, B =

an

n−1∏
j=1

aj

kj(1− rj)

αn +
n−1∑
l=1

αl

kl(1− rl)

n−1∏

k=l+1

ak

kk(1− rk)

,

Ai =

i−1∏
j=1

aj

kj(1− rj)
−

(
i−1∑

l=1

αl

kl(1− rl)

i−1∏

k=l+1

ak

kk(1− rk)

)
B, i = 2, . . . , n,

D =
γ

aR
B and C =

1

aL

[
β2S

∗ +

(
δ +

εγ(1− δ)

aR

)
B

]
.

(18)

In Eq. (17), S∗, E∗
i , I

∗, L∗ and R∗ are solutions of system (1) at the endemic
equilibrium, that is,





Λ = β1S
∗I∗ + β2S

∗L∗ + µS∗,

a1E
∗
1 = β1S

∗I + β2S
∗L∗,

...

aiE
∗
i = ki−1(1− ri−1)E

∗
i−1, i = 2, . . . , n,

aII
∗ =

n∑
i=1

αiE
∗
i + γR∗ + δL∗,

aLL
∗ = φ(1− r)I∗,

aRR
∗ = rI∗ + ε(1− δ)L∗.

(19)
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The time derivative of this function with respect to system (1) satisfies

U̇ = −µ
(S − S∗)2

S
+ (A1 − 1)(β1SI + β2SL) +

(
1− S∗

S

)
(β1S

∗I∗ + β2S
∗L∗)

+A1β1S
∗I∗

(
1− S

S∗
I

I∗
E∗

1

E1

)
+A1β2S

∗L∗
(
1− S

S∗
I

I∗
E∗

1

E1

)

+
n∑

i=2

Aiki−1(1− ri−1)E
∗
i−1

(
1− Ei−1

E∗
i−1

E∗
i

Ei

)
+B

n∑

i=1

αiE
∗
i

(
1− Ei

E∗
i

I∗

I

)

+BγR∗
(
1− R

R∗
I∗

I

)
+BδL∗

(
1− L

L∗
I∗

I

)
+ Cφ(1− r)I∗

(
1− I

I∗
L∗

L

)

+DrI∗
(
1− I

I∗
R∗

R

)
+Dε(1− δ)L∗

(
1− L

L∗
R∗

R

)
+ (−DaR +Bγ)R

+ [β1S
∗ −BaI + Cφ(1− r) +Dr]I + [β2S

∗ − CaL +Dε(1− δ) +Bδ]I

+
n∑

i=2

Aiki−1(1− ri−1)Ei−1 − anAnEn +B
n∑

i=1

αiEi − a1A1E1 −
n∑

i=2

aiAiEi.

(20)

Now, let (u1, u2, u3, u4, vi) =

(
S∗

S
,
I∗

I
,
L∗

L
,
R∗

R
,
E∗

i

Ei

)
. Then, Eq. (20) becomes

U̇ = −µ
(S − S∗)2

S
+ (A1 − 1)(β1SI + β2SL) + (1− u1) (β1S

∗I∗ + β2S
∗L∗)

+A1β1S
∗I∗

(
1− v1

u1u2

)
+A1β2S

∗L∗
(
1− v1

u2u3

)
+A2k1(1− r1)E

∗
1

(
1− v2

v1

)

+

n−1∑

i=2

Ai+1ki(1− ri)E
∗
i

(
1− vi+1

vi

)
+B

n∑

i=1

αiE
∗
i

(
1− u2

vi

)

+BγR∗
(
1− u2

u4

)
+BδL∗

(
1− u2

u3

)
+ Cφ(1− r)I∗

(
1− u3

u2

)

+DrI∗
(
1− u4

u2

)
+Dε(1− δ)L∗

(
1− u4

u3

)

+ [β1S
∗ −BaI + Cφ(1− r) +Dr]I + [β2S

∗ − CaL +Dε(1− δ) +Bδ]L

+ (−DaR +Bγ)R+

n−1∑

i=1

[−aiAi +Bαi +Ai+1ki(1− ri)]Ei

+ (−anAn +Bαn)En.

(21)

The coefficients Ai, B, C and D are chosen such that the coefficients of β1SI +
β2SL, L, R, Ei and En are equal to zero, that is,





A1 − 1 = 0,
β2S

∗ − CaL +Dε(1− δ) +Bδ = 0,
−DaR +Bγ = 0,
−aiAi +Bαi +Ai+1ki(1− ri) = 0, i = 1, 2, . . . , n− 1,
−Anan +Bαn = 0.

(22)

Solving the above equations yields the expressions of Ai, B, C and D given as
in Eq. (18). Replacing the expressions of Ai, B, C and D given in Eq. (18) into



Global stability of a tuberculosis model with n latent classes 1107

Eq. (21) gives

U̇ = −µ
(S − S∗)2

S
+ β1S

∗I∗
(
2− u1 − v1

u1u2

)
+ β2S

∗L∗
(
2− u1 − v1

u2u3

)

+

n−1∑

i=1

Ai+1ki(1− ri)E
∗
i

(
1− vi+1

vi

)
+B

n∑

i=1

αiE
∗
i

(
1− u2

vi

)

+BγR∗
(
1− u2

u4

)
+BδL∗

(
1− u2

u3

)
+ Cφ(1− r)I∗

(
1− u3

u2

)

+DrI∗
(
1− u4

u2

)
+Dε(1− δ)L∗

(
1− u4

u3

)
.

(23)

Multiplying the second, third, fourth and fifth equations of Eq. (22) by L∗, R∗,
E∗

i , i = 1, . . . , n − 1 and E∗
n, respectively, and using the expressions of aLL

∗,
aRR

∗, aiE∗
i and anE

∗
n defined as in Eq. (19), one has





β2S
∗L∗ − Cφ(1− r)I∗ +Dε(1− δ)L∗ +BδL∗ = 0,

−DrI∗ −Dε(1− δ)L∗ +BγR∗ = 0,

− β1S
∗I∗ − β2S

∗L∗ +Bα1E
∗
1 + a2A2k1(1− r1)E

∗
1 = 0,

−Aiki−1(1− ri−1)E
∗
i−1 +BαiE

∗
i +Ai+1ki(1− ri)E

∗
i = 0, i = 2, . . . , n− 1,

−Ankn−1(1− rn−1)E
∗
n−1 +BαnE

∗
n = 0.

(24)

Let F1(u), F2(u), F3(u) and Gi(u) (i = 1, . . . , n) where u = (u1, u2, u3, vi)
T

be n + 3 functions to be determined later. Then, multiplying the first, second,
third, fourth and fifth equations of Eq. (24) by F1(u), F2(u), F3(u), G1(u), Gi(u)
(i = 2, . . . , n− 1) and Gn(u), respectively, yields





β2S
∗L∗F1(u)− Cφ(1− r)I∗F1(u) +Dε(1− δ)L∗F1(u) +BδL∗F1(u) = 0,

−DrI∗F2(u)−Dε(1− δ)L∗F2(u) +BγR∗F2(u) = 0,

− β1S
∗I∗G1(u)− β2S

∗L∗G1(u) +

n−1∑

i=1

Ai+1ki(1− ri)E
∗
i (Gi(u)−Gi+1(u))

+
n∑

i=1

αiE
∗
i Gi(u).

(25)

Adding Eq. (25) to the right hand side of Eq. (23) yields

U̇ = −µ
(S − S∗)2

S
+ β1S

∗I∗
(
2− u1 − v1

u1u2
−G1

)

+ β2S
∗L∗

(
2− u1 − v1

u2u3
−G1 + F1

)

+

n−1∑

i=1

Ai+1ki(1− ri)E
∗
i

(
1− vi+1

vi
+Gi −Gi+1

)

+B
n∑

i=1

αiE
∗
i

(
1− u2

vi
+Gi

)
+BγR∗

(
1− u2

u4
+ F2

)

+BδL∗
(
1− u2

u3
+ F1

)
+ Cφ(1− r)I∗

(
1− u3

u2
− F1

)

+DrI∗
(
1− u4

u2
− F2

)
+Dε(1− δ)L∗

(
1− u4

u3
+ F1 − F2

)
.

(26)
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Now, we shall choose the functions F1(u), F2(u), F3(u) and Gi(u), which make

U̇ non positive. To do so, the functions F1(u), F2(u), F3(u) and Gi(u) are chosen
such that the coefficients of Cφ(1− r)I∗, DrI∗ and αiE

∗
i are equal to zero, that

is,

F1 = 1− u3

u2
, F2 = 1− u4

u2
and Gi = −1 +

u2

vi
(i = 1, . . . , n). (27)

After plugging the expressions of F1(u), F2(u), F3(u) and Gi(u) given as in Eq.
(27) into Eq. (26), one finally obtains

U̇ = −µ
(S − S∗)2

S
+ β1S

∗I∗
(
3− u1 − v1

u1u2
− u2

v1

)

+ β2S
∗L∗

(
4− u1 − v1

u1u3
− u2

v1
− u3

u2

)

+

n−1∑

i=1

Ai+1ki(1− ri)E
∗
i

(
1− vi+1

vi
+

u2

vi
− u2

vi+1

)

+BγR∗
(
2− u2

u4
− u4

u2

)
+BδL∗

(
2− u2

u3
− u3

u2

)

+Dε(1− δ)L∗
(
1− u4

u3
− u3

u2
+

u4

u2

)
.

(28)

Now let

F = 1 +
u4

u2
− u4

u3
− u3

u2
and Hi = 1 +

u2

vi
− vi+1

vi
− u2

vi+1
, i = 1, . . . , n− 1. (29)

The next step is to show that the functions F and Hi are non-positive for all
u1, u2, u3, vi ∈ R≥0.

By using Appendix 2 in Appendix with w = 2, y1 = u3, y2 = u4 and Y = u2,

when u3 ≤ u4 ≤ u2 ≤ 1 one has 1 +
u4

u2
− u4

u3
− u3

u2
≤ 0, i.e., F ≤ 0. Also,

using the same lemma with w = 2, y1 = vi+1, y2 = u2 and Y = vi, then if

vi+1 ≤ u2 ≤ vi ≤ 1 one obtains 1 +
u2

vi
− vi+1

vi
− u2

vi+1
≤ 0, i.e., Hi ≤ 0.

Thus U̇ ≤ 0 and Eq. (28) implies that U̇ is less than or equal to zero with

equality only if S = S∗. Therefore, U̇ ≤ 0 for all S,Ei, I, L,R ≥ 0, provided
that S∗, E∗

i , I
∗, L∗, R∗ are positive, where the equality U̇ = 0 holds only on

the straight line S = S∗, E∗
i /Ei = I∗/I = L∗/L = R∗/R. It is easy to see

that for system (1), P ∗ is the only equilibrium state on this line. Therefore,
by Lyapunov-LaSalle asymptotic stability theorem [20-22], the positive endemic
equilibrium state P ∗ is globally asymptotically stable in Ωρ ⊂ Rn+4

≥0 , except on
the S-axis which is the stable manifold for the fixed point P0. This achieves the
proof. ¤

Remark 1. It is possible for inequality (16) to fail, in which case the global
stability of P ∗ may not be possible.
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Table 1. Estimation of parameters

Parameters Estimated value Source
Λ 1000/yr Assumed
β1 Variable Assumed
β2 Variable Assumed
µ 0.0101/yr [23]
k1 0.5/yr Assumed
r1 0/yr [11]
α1 0.003/yr Assumed
α2 0.005/yr Assumed
r 0.8182/yr [11]
φ 0.2/yr [11]
δ 0.1/yr [11]
γ 0.002/yr [11]
ε 0.001/yr Assumed
dI 0.022722/yr [11]
dL 0.020/yr [11]
d1 0.001/yr Assumed
d2 0.002/yr Assumed

4. Numerical simulations

To illustrate the various theoretical results contained in this paper, system
(1) is simulated with two latent classes (n = 2) and parameter values using real
data of the situation of TB in Cameroon and summarize in the following table.

Numerical results are reported in Figs. 2-6.
Figure 2 presents the basic reproduction ratio R0 as a function of the pa-

rameter at which infectious individuals become lost sight φ. In this figure the
line blue stands for β2 < ∆ and the line red for β2 > ∆. As predicted by
Lemma 3.2, when the parameter φ increases, one can see that for β2 < ∆ the
basic reproduction ratio decreases while for β2 > ∆, the basic reproduction ratio
increases

Figure 3 presents the trajectory plot of model system (1) with n = 2 using
various initial conditions when β1 = 0.000009, β2 = 0.000015 and n = 2 (so that
R0 = 0.591). From this figure, one can see that the trajectories of system (1)
with n = 2 converge to the disease-free equilibrium. This means that the disease
disappears in the host population when R0 ≤ 1.

Figure 4 gives the trajectory plot when β1 = 0.0001, β2 = 0.0005 and n = 2
(so that R0 = 9.0570) using various initial conditions. It illustrates that the
trajectories of model system (1) with n = 2 converge to the unique endemic
equilibrium point. Thus, when R0 > 1, the disease persists in the host popula-
tion as shown in Theorem 3.4.

Figure 5 shows the impact of varying the parameter φ in system (1) with n = 2
when β1 = 0.0001, β2 = 0.0005 and n = 2. The model was simulated with the
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following initial conditions S(0) = 57414, E1(0) = 478, E2(0) = 150, I(0) = 283,
L(0) = 204 and R(0) = 2567. From this figure, one can see that as the value
of φ increases, the population of susceptible decreases (see Fig. 5(a)), while the
population of latently-infected, infectious, lost sight and recovered increases (see
Figs. 5(b)-(f)). This demonstrates that lost sight play an important on the
spread of TB in a population. This pattern is also observed for the model of the
basic reproduction ratio R0. Care then should be taken to prevent the failure of
treatment, the abandon of treatment, the rest of the sputum examination and
the relapse of the disease after treatment.

Figure 6 presents the mean prevalence of the infection as a function of the
number of latent classes n. It clearly appears that the prevalence of the infection
increases with the number of latent classes.
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Figure 2. Basic reproduction ratio R0 as a function of φ.

5. Conclusion

In this paper, we have give a complete analysis of a tuberculosis model with
two differential infectivity, n classes of latently infected individuals and mass
balance incidence. In contrast to many TB models in the literature, we have
included two infective classes emanating from infectious and lost sight. By ana-
lyzing this model, we found that it is globally asymptotically stable and possesses
the only globally stable equilibrium state. Depending on the basic reproduction
ratio, this steady state is either the endemic or the disease-free. The global
stability of the infection-free equilibrium state implies that for any initial level
of infection, the disease will eventually fade out from the population when the
condition for this stability, namely R0 ≤ 1, holds. The condition R0 > 1 implies
that the disease will persist in a population.

In numerical analysis, we have used the basic reproduction ratio R0 to de-
termine the role of lost sight on the spread of TB in a population. We have
observed that to reach a disease-free equilibrium, it will take more decades than
reaching endemic equilibrium point, because some latently infected individuals
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Figure 3. Trajectories of system (1) for different initial con-
ditions when β1 = 0.000009, β2 = 0.000015 and n = 2 (so that
R0 = 0.591).

might not develop disease over their life time. By increasing the value of φ, (the
proportional of TB patients who never return in the hospital for the rest of spu-
tum examinations and check-up), we have observed that the population of lost
sight increases. This illustrates the fact that if the TB patients understand the
importance to take all dose of their drugs and to make all sputum examinations
during the period of their treatment, the number of recovered individuals will
increase, hence the TB epidemic and death related to TB will decrease.

Appendix : Useful inequalities

In this appendix, we give inequalities which are necessary to demonstrate that
the time derivative of the Lyapunov function U(S,Ei, I, L,R) is non-positive. A
key tool is the Arithmetic-Geometric Means Inequality, which we state here.
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Figure 4. Trajectories of system (1) for different initial con-
ditions when β1 = 0.0001, β2 = 0.0005 and n = 2 (so that
R0 = 9.0570).

Appendix 1 (Arithmetic-Geometric Means Inequalit). Let z1, . . . , zw be posi-
tive real numbers. Then,

w
√
z1 . . . zw ≤ z1 + . . .+ zw

w
. (30)

Furthermore, exact equality only occur if z1 = . . . = zw.
An immediate consequence of the Arithmetic-Geometric Means Inequality

follows.
Appendix 2 ([13]). Let y1 ≤ . . . ≤ yw ≤ Y be positive real numbers. Then

yw
Y

+ (w − 1)−
(
y1
Y

+
y2
y1

+ . . .+
yw

yw−1

)
≤ 0. (31)
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Figure 5. Time series of (a) susceptible individuals, (b)
latently-infected individuals in the first stage of infection, (c)
latently-infected individuals in the second stage of infection,
(d) infectious individuals, (e) lost sight and (f) recovered in-
dividuals showing the impact of varying φ when β1 = 0.0001,
β2 = 0.0005 and n = 2.
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