• Title/Summary/Keyword: Low-Power Design

Search Result 3,562, Processing Time 0.04 seconds

DESIGN OF A LOW TEMPERATURE DIFFERENCE STIRLING ENGINE (저온도차 모형 스털링 엔진의 최대출력 설계조건)

  • Jung, P.S.;Won, M.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.420-423
    • /
    • 2003
  • A low temperature difference model Stirling engine is a small Stirling engine running with several degree of temperature difference without power output. In this study, the design parameters to give maximum power are discussed. As results, the phase angle is about 100 degree, and compression ratio is 1.5% of the ratio of heat source temperatures at maximum power condition.

  • PDF

Design and Implementation of Low power ALU based on NCL (Null Convention Logic) (NCL 기반의 저전력 ALU 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.59-65
    • /
    • 2013
  • Conventional synchronous design circuits cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in this paper, a NCL (Null Convention Logic) design as an asynchronous design method has been proposed, where the NCL method doesn't require any timing analysis, and it has a very simple design methodology. Base on the NCL method, a new low power reliable ALU has been designed and implemented using MagnaChip-SKhynix 0.18um CMOS technology. The experimental results of the proposed NCL ALU have been compared to those of a conventional pipelined ALU in terms of power consumption and speed.

Semiconductor Characteristics and Design Methodology in Digital Front-End Design (Digital Front-End Design에서의 반도체 특성 연구 및 방법론의 고찰)

  • Jeong, Taik-Kyeong;Lee, Jang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1804-1809
    • /
    • 2006
  • The aim of this Paper is to describe the implementation of a low-power digital front-End Design (FED) that will act as the core of a stand-alone Power dissipation methodology. The design of digital integrated circuits is a large and diverse area, and we have chosen to focus on low power FED. Designs are made from synthesized logic, and we need to consider the low power digital FED including input clock, buffer, latches, voltage regulator, and capacitance-to-voltage counter which have been integrated onto hish bandwidth communication chips and system. These single- chip micro instruments, implemented in a 0.12um CMOS technology operate with a single 0.9V supply voltage, and can be used to monitor dynamic and static power dissipation, Vesture, acceleration junction temperature (Tj), etc.

Asynchronous Circuit Design Combined with Power Switch Structure (파워 스위치 구조를 결합한 비동기 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • This paper proposes an ultra-low power design methodology for asynchronous circuits which combines with power switch structure used for reducing leakage current in the synchronous circuits. Compared to existing delay-insensitive asynchronous circuits such as static NCL and semi-static NCL, the proposed methodology provides the leakage power reduction in the NULL mode due to the high Vth of the power switches and the switching power reduction at the switching moment due to the smaller area even though it has a reasonable speed penalty. Therefore, it will become a low power design methodology required for IoT system design placing more value on power than speed. In this paper, the proposed methodology has been evaluated by a $4{\times}4$ multiplier designed using 0.11 um CMOS technology, and the simulation results have been compared to the conventional asynchronous circuits in terms of circuit delay, area, switching power and leakage power.

Design of Single-Stage AC/DC Converter with High Efficiency and High Power Factor for Low Power Level Applications

  • Lee, Jun-Young;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.123-131
    • /
    • 1997
  • Design of single stage AC/DC converter with high power factor for low power level applications is proposed. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an active clamp method and synchronous rectifiers. To verify the performances of the proposed converter, a 90W-converter has been designed. The modelling of this proposed converter is power formed using an averaging technique and based on this model a detailed analysis is carried out. This prototype meets the IEC555-2 requirements satisfactorily with nearly unity power factor and high efficiency.

  • PDF

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Design of a Low-Power Low-Noise Clock Synthesizer PLL (저전력 저잡음 클록 합성기 PLL 설계)

  • Park, J.K.;Shim, H.C.;Park, J.T.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.479-481
    • /
    • 2006
  • This paper describes a 2.5V, 320MHz low-noise and low-power Phase Locked Loop(PLL) using a noise-rejected Voltage Controlled ring Oscillator(VCO) fabricated in a TSMC 0.25um CMOS technology. In order to improve the power consumption and oscillation frequency of the PLL, The VCO consist of three-stage fully differential delay cells that can obtain the characteristic of high speed, low power and low phase noise. The VCO operates at 7MHz -670MHz. The oscillator consumes l.58mA from a 320MHz frequency and 2.5V supply. When the PLL with fully-differential ring VCO is locked 320MHz, the jitter and phase noise measured 26ps (rms), 157ps (p-p) and -97.09dB at 100kHz offset. We introduce and analysis the conditions in which ring VCO can oscillate for low-power operation.

  • PDF

The Low Voltage Analog Multiplier Using The Bulk-driven MOSFET Techniques (Bulk-Driven 기법을 이용한 저전압 Analog Multiplier)

  • 문태환;권오준;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.301-304
    • /
    • 2001
  • The analog multiplier is very useful building block in many circuits such as filter, frequency-shifter, and modulators. In recent year, The main design issue of circuit designer is low-voltage/low-power system design, because of all systems are recommended very integrated system and portable system In this paper, the proposed the four-quadrant analog multiplier is using the bulk-driven techniques. The bulk-driven technique is very useful technique in low-voltage system, compare with gate-driven technique. therefore the proposed analog multiplier is operated in 1V supply voltage. And the proposed analog multiplier is low power dissipation compare with the others. therefor the proposed analog multiplier is convenient in low-voltage/low-power in system.

  • PDF

Design of Low Noise Amplifier Utilizing Input and Inter Stage Matching Circuits (다양한 매칭 회로들을 활용한 저잡음 증폭기 설계 연구)

  • Jo, Sung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.853-856
    • /
    • 2021
  • In this paper, a low noise amplifier having high gain and low noise by using input and inter stage matching circuits has been designed. A current-reused two-stage common-source topology is adopted, which can obtain high gain and low power consumption. Deterioration of noise characteristics according to the source inductive degeneration matching is compensated by adopting additional matching circuits. Moreover trade-offs among noise, gain, linearity, impedance matching, and power dissipation have been considered. In this design, 0.18-mm CMOS process is employed for the simulation. The simulated results show that the designed low noise amplifier can provide high power gain and low noise characteristics.