• Title/Summary/Keyword: Low-Density Matrices

Search Result 35, Processing Time 0.024 seconds

New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing

  • Truong, Son Ngoc;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.356-363
    • /
    • 2014
  • In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption.

Design of an Efficient LDPC Codec for Hardware Implementation (하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계)

  • Lee Chan-Ho;Park Jae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.50-57
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.

Construction of Multiple-Rate Quasi-Cyclic LDPC Codes via the Hyperplane Decomposing

  • Jiang, Xueqin;Yan, Yier;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • This paper presents an approach to the construction of multiple-rate quasi-cyclic low-density parity-check (LDPC) codes. Parity-check matrices of the proposed codes consist of $q{\times}q$ square submatrices. The block rows and block columns of the parity-check matrix correspond to the hyperplanes (${\mu}$-fiats) and points in Euclidean geometries, respectively. By decomposing the ${\mu}$-fiats, we obtain LDPC codes of different code rates and a constant code length. The code performance is investigated in term of the bit error rate and compared with those of LDPC codes given in IEEE standards. Simulation results show that our codes perform very well and have low error floors over the additive white Gaussian noise channel.

An engineering-based assessment methodology on the loss of residential buildings under wind hazard

  • Li, Mingxin;Wang, Guoxin
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The loss prediction and assessment during extreme events such as wind hazards is always crucial for the group low-rise residential buildings. This paper analyses the effect of variation in building density on wind-induced loss for low-rise buildings and proposes a loss assessment method consequently. It is based on the damage matrices of the building envelope structures and the main load-bearing structure, which includes the influence factors such as structure type, preservation degree, building density, and interaction between different envelope components. Accordingly, based on field investigation and engineering experience, this study establishes a relevant building direct economic loss assessment model. Finally, the authors develop the Typhoon Disaster Management System to apply this loss assessment methodology to practice.

A Design of ALT LDPC Codes Using Circulant Permutation Matrices (순환 치환 행렬을 이용한 ALT LDPC 부호의 설계)

  • Lee, Kwang-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, we propose a simple H parity check matrix from the CPM(circulant permutation matrix), which can easily avoid the cycle-4, and approach to flexible code rates and lengths. As a result, the operations of the submatrices will become the multiplications between several CPMs, the calculations of the LDPC(low density parity check) encoding could be simplest. Also we consider the fast encoding problem for LDPC codes. The proposed constructions could lead to fast encoding based on the simplest matrices operations for both regular and irregular LDPC codes.

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

Novel construction of quasi-cyclic low-density parity-check codes with variable code rates for cloud data storage systems

  • Vairaperumal Bhuvaneshwari;Chandrapragasam Tharini
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.404-417
    • /
    • 2023
  • This paper proposed a novel method for constructing quasi-cyclic low-density parity-check (QC-LDPC) codes of medium to high code rates that can be applied in cloud data storage systems, requiring better error correction capabilities. The novelty of this method lies in the construction of sparse base matrices, using a girth greater than 4 that can then be expanded with a lift factor to produce high code rate QC-LDPC codes. Investigations revealed that the proposed large-sized QC-LDPC codes with high code rates displayed low encoding complexities and provided a low bit error rate (BER) of 10-10 at 3.5 dB Eb/N0 than conventional LDPC codes, which showed a BER of 10-7 at 3 dB Eb/N0. Subsequently, implementation of the proposed QC-LDPC code in a softwaredefined radio, using the NI USRP 2920 hardware platform, was conducted. As a result, a BER of 10-6 at 4.2 dB Eb/N0 was achieved. Then, the performance of the proposed codes based on their encoding-decoding speeds and storage overhead was investigated when applied to a cloud data storage (GCP). Our results revealed that the proposed codes required much less time for encoding and decoding (of data files having a 10 MB size) and produced less storage overhead than the conventional LDPC and Reed-Solomon codes.

An Efficient Matrix-Vector Product Algorithm for the Analysis of General Interconnect Structures (일반적인 연결선 구조의 해석을 위한 효율적인 행렬-벡터 곱 알고리즘)

  • Jung, Seung-Ho;Baek, Jong-Humn;Kim, Joon-Hee;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.56-65
    • /
    • 2001
  • This paper proposes an algorithm for the capacitance extraction of general 3-dimensional conductors in an ideal uniform dielectric that uses a high-order quadrature approximation method combined with the typical first-order collocation method to enhance the accuracy and adopts an efficient matrix-vector product algorithm for the model-order reduction to achieve efficiency. The proposed method enhances the accuracy using the quadrature method for interconnects containing corners and vias that concentrate the charge density. It also achieves the efficiency by reducing the model order using the fact that large parts of system matrices are of numerically low rank. This technique combines an SVD-based algorithm for the compression of rank-deficient matrices and Gram-Schmidt algorithm of a Krylov-subspace iterative technique for the rapid multiplication of matrices. It is shown through the performance evaluation procedure that the combination of these two techniques leads to a more efficient algorithm than Gaussian elimination or other standard iterative schemes within a given error tolerance.

  • PDF

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

Study on the Construction Method of QC LDPC Codes in ST-BICM Systems for Full Diversity (시공간 비트 인터리브된 부호화 변조 시스템에서 최대 다이버시티를 달성하기 위한 준순환 저밀도 패리티 검사 부호의 생성 연구)

  • Kim, Sung-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.151-156
    • /
    • 2012
  • In this paper, design of quasi-cyclic(QC) low-density parity-check codes is proposed to have full diversity for space-time bit-interleaved coded modulation(ST-BICM) systems. Necessary and sufficient conditions that the proposed scheme has full diversity are proved as the condition that submatrices corresponding to the system part of codewords are invertible. And new construction method of binary invertible matrices for QC LDPC codes in ST-BICM systems are also proposed and modification for parity-check matrices are also explained.