DOI QR코드

DOI QR Code

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2012.09.04
  • Accepted : 2012.10.30
  • Published : 2013.01.31

Abstract

Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

Keywords

References

  1. Bauer RS. Preface. In: Bauer RS, ed. Epoxy resin chemistry, ACS Symposium Series Vol. 114, American Chemical Society, Washington, DC, ix (1979). http://dx.doi.org/10.1021/bk-1979-0114.pr001.
  2. Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I. Nanostructured thermosetting systems by modification with epoxidized styrene−butadiene star block copolymers. Effect of epoxidation degree. Macromolecules, 39, 2254 (2006). http://dx.doi.org/10.1021/ma0515477.
  3. Chen JL, Jin FL, Park SJ. Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-$CaCO_3$ ternary systems. Macromol Res, 18, 862 (2010). http://dx.doi.org/10.1007/s13233-010-0911-4.
  4. Jin FL, Park SJ. Thermal stability of trifunctional epoxy resins modified with nanosized calcium carbanate. Bull Korean Chem Soc, 30, 334 (2009). http://dx.doi.org/10.5012/bkcs.2009.30.2.334.
  5. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  6. Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212.
  7. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled car-bon nanotubes. J Phys Chem B, 107, 3712 (2003). http://dx.doi.org/10.1021/jp027500u.
  8. Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.347.
  9. Jin FL, Park SJ. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess. Carbon Lett, 12, 57 (2011). http://dx.doi.org/10.5714/CL.2011.12.2.057.
  10. Zhang X, Zhang J, Wang R, Liu Z. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 42, 1455 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.003.
  11. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci, 35, 357 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.
  12. Kim KS, Park SJ. Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol Res, 18, 981 (2010). https://doi.org/10.1007/s13233-010-1011-1
  13. Lee YS, Im JS, Yun SM, Nho YC, Kang PH, Jin H. X-ray photoelectron spectroscopic analysis of modified MWCNT and dynamic mechanical properties of e-beam cured epoxy resins with the MWCNT. Carbon Lett, 10, 314 (2009). http://dx.doi.org/10.5714/CL.2009.10.4.314.
  14. Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.
  15. Jung HT, Cho Y, Kim T, Kim TA, Park M. Preparation of amineepoxy adducts(AEA)/thin multiwalled carbon nanotubes (MWCNTs) composite particles using dry processes. Carbon Lett, 11, 107 (2010). http://dx.doi.org/10.5714/CL.2010.11.2.107.
  16. Hsu SH, Wu MC, Chen S, Chuang CM, Lin SH, Su WF. Synthesis, morphology and physical properties of multi-walled carbon nanotube/ biphenyl liquid crystalline epoxy composites. Carbon, 50, 896 (2012). http://dx.doi.org/10.1016/j.carbon.2011.09.051.
  17. Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A, 528, 8517 (2011). http://dx.doi.org/10.1016/j.msea.2011.08.054.
  18. Liu L, Wagner HD. Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol, 65, 1861 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.04.002.
  19. Luan J, Zhang A, Zheng Y, Sun L. Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Composites A, 43, 1032 (2012). http://dx.doi.org/10.1016/j.compositesa.2012.02.005.
  20. Park OK, Kim NH, Yoo GH, Rhee KY, Lee JH. Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/ epoxy composites. Composites B, 41, 2 (2010). http://dx.doi.org/10.1016/j.compositesb.2009.10.002.
  21. Barghamadi M, Behmadi H. Influence of the epoxy functionalization of multiwall carbon nanotubes on the nonisothermal cure kinetics and thermal properties of epoxy/multiwall carbon nanotube nanocomposites. Polym Compos, 33, 1085 (2012). http://dx.doi.org/10.1002/pc.22232.
  22. Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028.
  23. Xu L, Fang Z, Song Pa, Peng M. Functionalization of carbon nanotubes by corona-discharge induced graft polymerization for the reinforcement of epoxy nanocomposites. Plasma Processes Polym, 7, 785 (2010). http://dx.doi.org/10.1002/ppap.201000019.
  24. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 48, 592 (2010). http://dx.doi.org/10.1016/j.carbon.2009.08.047.
  25. Wang J, Fang Z, Gu A, Xu L, Liu F. Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J Appl Polym Sci, 100, 97 (2006). http://dx.doi.org/10.1002/app.22647.
  26. Lee JH, Rhee KY, Park SJ. Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. Composites A, 42, 478 (2011). http://dx.doi.org/10.1016/j.compositesa.2011.01.004.
  27. Spitalsky Z, Matejka L, Slouf M, Konyushenko EN, Kovarova J, Zemek J, Kotek J. Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos, 30, 1378 (2009). http://dx.doi.org/10.1002/pc.20701.
  28. Hadjiev VG, Warren GL, Sun L, Davis DC, Lagoudas DC, Sue HJ. Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon, 48, 1750 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.018.
  29. Luo Y, Zhao Y, Cai J, Duan Y, Du S. Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/ epoxy nanocomposites. Mater Design, 33, 405 (2012). http://dx.doi.org/10.1016/j.matdes.2011.04.033.
  30. Kim HC, Kim SK, Kim JT, Rhee KY, Kathi J. The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites. J Polym Sci B, 48, 1175 (2010). http://dx.doi.org/10.1002/polb.22007.
  31. Peng K, Liu LQ, Li H, Meyer H, Zhang Z. Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture. Carbon, 49, 70 (2011). http://dx.doi.org/10.1016/j.carbon.2010.08.043.
  32. Yaping Z, Aibo Z, Qinghua C, Jiaoxia Z, Rongchang N. Functionalized effect on carbon nanotube/epoxy nano-composites. Mater Sci Eng A, 435-436, 145 (2006). http://dx.doi.org/10.1016/j.msea.2006.07.106.
  33. Armstrong G, Ruether M, Blighe F, Blau W. Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym Int, 58, 1002 (2009). http://dx.doi.org/10.1002/pi.2621.
  34. Yang K, Gu M. The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci, 49, 2158 (2009). http://dx.doi.org/10.1002/pen.21461.
  35. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol-gel method. J Phys Chem Solids, 71, 539 (2010). http://dx.doi.org/10.1016/j.jpcs.2009.12.031.
  36. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer, 48, 5662 (2007). http://dx.doi.org/10.1016/j.polymer.2007.06.073.
  37. Teng CC, Ma CCM, Chiou KC, Lee TM. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Composites B, 43, 265 (2012). http://dx.doi.org/10.1016/j.compositesb.2011.05.027.
  38. Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ. Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polym Eng Sci, 50, 183 (2010). http://dx.doi.org/10.1002/pen.21509.
  39. Schulz SC, Faiella G, Buschhorn ST, Prado LASA, Giordano M, Schulte K, Bauhofer W. Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions. Eur Polym J, 47, 2069 (2011). http://dx.doi.org/10.1016/j.eurpolymj.2011.07.022.
  40. Gkikas G, Barkoula NM, Paipetis AS. Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Composites B, 43, 2697 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.01.070.
  41. Martone A, Formicola C, Giordano M, Zarrelli M. Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol, 70, 1154 (2010). http://dx.doi.org/10.1016/j.compscitech.2010.03.001.
  42. Feng QP, Yang JP, Fu SY, Mai YW. Synthesis of carbon nanotube/ epoxy composite films with a high nanotube loading by a mixedcuring- agent assisted layer-by-layer method and their electrical conductivity. Carbon, 48, 2057 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.016.
  43. Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW. Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab, 95, 870 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.003.
  44. Loos MR, Yang J, Feke DL, Manas-Zloczower I. Effect of blockcopolymer dispersants on properties of carbon nanotube/epoxy systems. Compos Sci Technol, 72, 482 (2012). http://dx.doi.org/10.1016/j.compscitech.2011.11.034.
  45. Saw LN, Mariatti M, Azura AR, Azizan A, Kim JK. Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites. Composites B, 43, 2973 (2012). http://dx.doi.org/10.1016/j.compositesb.2012.05.048.
  46. Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: a comparative study. Compos Sci Technol, 65, 2300 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.04.021.
  47. Prolongo SG, Gude MR, Urena A. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/ epoxy composites by using a pre-curing treatment. Compos Sci Technol, 71, 765 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.01.028.
  48. Cividanes LS, Brunelli DD, Antunes EF, Corat EJ, Sakane KK, Thim GP. Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci, 127, 544 (2013). http://dx.doi.org/10.1002/app.37815.
  49. Kim MT, Rhee KY, Park SJ, Hui D. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Composites B, 43, 2298 (2012). http://dx.doi.org/10.1016/j.compositesb.2011.12.007.
  50. Zehua Q, Guojian W. A comparative study on the properties of the different amino-functionalized multiwall carbon nanotubes reinforced epoxy resin composites. J Appl Polym Sci, 124, 403 (2012). http://dx.doi.org/10.1002/app.35105.
  51. Farahani RD, Dalir H, Le Borgne V, Gautier LA, El Khakani MA, Levesque M, Therriault D. Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin-streptavidin interactions. Compos Sci Technol, 72, 1387 (2012). http://dx.doi.org/10.1016/j.compscitech.2012.05.010.
  52. Kwon Y, Yim BS, Kim JM, Kim J. Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectron Reliab, 51, 812 (2011). http://dx.doi.org/10.1016/j.microrel.2010.11.005.
  53. Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y. Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci, 125, E334 (2012). http://dx.doi.org/10.1002/app.35677.
  54. Guo P, Chen X, Gao X, Song H, Shen H. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/ epoxy composites. Compos Sci Technol, 67, 3331 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.03.026.
  55. Kim KS, Park SJ. Influence of surface treatment of multi-walled carbon nanotubes on interfacial interaction of nanocomposites. Carbon Lett, 11, 102 (2010). http://dx.doi.org/10.5714/CL.2010.11.2.102.
  56. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol, 64, 2309 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.025.
  57. Liu L, Etika KC, Liao KS, Hess LA, Bergbreiter DE, Grunlan JC. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun, 30, 627 (2009). http://dx.doi.org/10.1002/marc.200800778.
  58. Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Composites A, 34, 689 (2003). http://dx.doi.org/10.1016/S1359-835X(03)00140-4.

Cited by

  1. Carbon nanotubes-properties and applications: a review vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.131
  2. Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/615915
  3. /Epoxy Composites vol.37, pp.4, 2013, https://doi.org/10.7317/pk.2013.37.4.449
  4. Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.067
  5. Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites vol.34, pp.14, 2015, https://doi.org/10.1177/0731684415588776
  6. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview vol.19, 2016, https://doi.org/10.5714/CL.2016.19.001
  7. Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay vol.56, pp.13, 2017, https://doi.org/10.1080/03602559.2016.1276594
  8. Fabrication and Characterization of High-Performance Diglycidyl Ether of Bisphenol-A/Tetrabromobisphenol-A Blend Reinforced with Multiwalled Carbon Nanotube Composite vol.56, pp.3, 2017, https://doi.org/10.1080/03602559.2016.1233255
  9. Interaction mechanism between serine functional groups and single-walled carbon nanotubes vol.29, pp.2, 2015, https://doi.org/10.1002/poc.3488
  10. Electrical, Thermal and Mechanical Properties of Epoxy/CNT/Calcium Carbonate Nanocomposites vol.21, pp.1, 2017, https://doi.org/10.1590/1980-5373-mr-2017-0801
  11. Influence of carbon nanotube surface treatment on resistivity and low-frequency noise characteristics of epoxy-based composites vol.39, pp.S2, 2018, https://doi.org/10.1002/pc.24775