• Title/Summary/Keyword: Low temperature synthesis

Search Result 605, Processing Time 0.051 seconds

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Graphene Synthesis by Low Temperature Chemical Vapor Deposition and Rapid Thermal Anneal (저온 화학기상증착법 및 급속가열 공정을 이용한 그래핀의 합성)

  • Lim, Sung-Kyu;Mun, Jeong-Hun;Lee, Hi-Deok;Yoo, Jung-Ho;Yang, Jun-Mo;Wang, Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1095-1099
    • /
    • 2009
  • As a substitute material for silicon, we synthesized few layer graphene (FLG) by CVD process with a 300-nm-thick nickel film deposited on the silicon substrate and found out the lowest temperature for graphene synthesis. Raman spectroscopy study showed that the D peak (wave length : ${\sim}1,350\;cm^{-1}$) of graphene was minimized and then the 2D one (wave length : ${sim}2,700\;cm^{-1}$) appeared when rapid thermal anneal is carried out with the $C_2H_2$ treated nickel film. This study demonstrates that a high quality FLG formed at a low temperature of $400^{\circ}C$ is applicable as CMOS devices and transparent electrode materials.

Low temperature synthesis of $LaNiO_3$ crystalline phase via oxide powder technology (산화물 합성법에 의한 $LaNiO_3$ 결정상의 저온합성)

  • Kim, Dae-Young;Jeong, Jae-Hoon;Son, Se-Mo;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.218-223
    • /
    • 2002
  • Low temperature synthesis of $LaNiO_3$ crystalline phase composited from mixtures of $La_2O_3$ and NiO via the ball mill and mechanochemical process were investigated. By the ball mill, 20% of $LaNiO_3$ crystalline phase was formed in the samples sintered at $900^{\circ}C$ due to the lack of reactivity of NiO. However, the mechanochemical process yielded about 93% of $LaNiO_3$ crystalline phase in room temperature.

  • PDF

Synthesis of Pd and Pt Based Low Cost Bimetallic Anode Electrocatalyst for Glycerol Electrooxidation in Membraneless Air Breathing Microfluidic Fuel Cell

  • Panjiara, Deoashish;Pramanik, Hiralal
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.38-57
    • /
    • 2021
  • The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.

Synthesis of Sphene-pink Pigment under Various Firing Conditions

  • Lee, Hyun-Soo;Park, Joo-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.615-620
    • /
    • 2009
  • The present research was performed to determine the optimal firing condition and holding time for malayaite crystal, which is responsible for the stable pink-red coloration in glaze at high temperatures, using Cr$Cl_3$ as chromophore for the synthesis of $Cr_2O_3-SnO_2-CaO-SiO_2$ system pigments. The malayaite crystal was influenced by the raw materials used for synthesis, firing temperature, and holding time. Thus there are differences in the crystal phase and in the coloration according to the condition of synthesis. When Cr$Cl_3$ was used as chromophore, the pigment could be synthesized at lower temperatures, because Cr$Cl_3$ melts at $1500{^{\circ}C}$, which is much lower than the temperature at which $Cr_2O_3$ melts (higher than $2435{^{\circ}C}$). And the employed Cr ion showed a change in oxidation state. When a mineralizer was used to improve the employment of malayaite and the Cr ion, and the low temperature was maintained at which the malayaite crystal is produced, the production of malayaite crystal was promoted and the employment of chromophore was also promoted in the oxidation state of Cr (IV). The results of the experiment showed that the optimal firing condition was 18 h of holding time at $800{^{\circ}C}$, using Cr$Cl_3$ as chromophore, followed by 2 h at the raised temperature of $1150{^{\circ}C}$. The change in coloration of the Cr (IV) employed by malayaite showed a very rich color of red. Thus it was possible to effectively synthesize sphene-pink pigments with more red tint at a low temperature.

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G.;Agarwal, Sarika
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3046-3054
    • /
    • 2013
  • Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.

Soft Solution Processing : Low-Energy Direct Fabrication of Advanced Inorganic Materials

  • Masahiro Yoshimura;한규승;Wojciech Suchanek
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.875-878
    • /
    • 1999
  • A new concept ??soft solution processing?? has been introduced to fabricate advanced solid state materials in an economical, environmentally friendly, and energy and material efficient way. The prepared films show the desired and prospective properties despite of low temperature synthesis and no post-synthesis annealing. Successful examples demonstrate that soft solution processing is capable of preparing advanced materials with planned properties through the easy control of reaction conditions in a suitable aqueous solution in a single synthetic step without huge energy consumption and without any sophisticated equipment.