Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.10.3046

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity  

Krishnamurthy, G. (Department of Studies in Chemistry, Bangalore University)
Agarwal, Sarika (Department of Studies in Chemistry, Bangalore University)
Publication Information
Abstract
Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.
Keywords
Solvothermal process; MWCNTs' bundles; Electron microscopy; BET study; $H_2$ storage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iijima, S. Nature 1991, 354, 56.   DOI
2 Shim, M.; Javey, A.; Kam N. W. S.; Dai, H. J. J. Am. Chem. Soc. 2001, 123, 11512.   DOI   ScienceOn
3 Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622.   DOI   ScienceOn
4 Collins, P. G.; Zettl, A.; Bando, H.; Smalley, R. E. Science 1997, 278, 100.   DOI   ScienceOn
5 Arenillas, A.; Zubizarreta, L.; Pis, J. J. Int. J. Hydrogen Energy 2009, 34, 4575.   DOI   ScienceOn
6 Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Science 1999, 284, 1340.   DOI   ScienceOn
7 Kim, P.; Lieber, C. M. Science 1999, 286, 2148.   DOI   ScienceOn
8 Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512.   DOI   ScienceOn
9 Peigney, A.; Coquay, P.; Flahaut, E.; Vandenberghe, R. E.; De Grave, E.; Laurent, C. J. Phys. Chem. B 2001, 105, 9699.   DOI   ScienceOn
10 Kasumov, Y. A.; Shailos, A.; Khodos1, I. I.; Volkov, V. T.; Levashov, V. I.; Matveev, V. N.; Gueron, S.; Kobylko, M.; Kociak, M.; Bouchiat, H.; Agache, V.; Rollier, A. S.; Uchaillot, L.; Bonnot, A. M.; Kasumov, A. Y. Appl. Phys. A 2007, 88, 687.   DOI
11 Bethune, D. S.; Kiang, C. H.; deVries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.   DOI   ScienceOn
12 Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Appl. Phys. A 2001, 72, 573.   DOI
13 Guerrero, A.; Puerta, J.; Gomez, F.; Blanco, F. Phys. Scr. 2008, 131, 4007.
14 Joseyacaman, M.; Mikyoshida, M.; Rendon, L.; Santiesteban, J. G. Appl. Phys. Lett. 1993, 62, 657.   DOI
15 Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Minoru, S. K.; Kroto, H. W. J. Phys. Chem. Solids 1993, 54, 1841.   DOI   ScienceOn
16 Mahanandia, P.; Vishwakarma, P. N.; Nanda, K. K.; Prasad, V.; Baraic, K.; Mondal, A. K.; Sarangi, S.; Dey, G. K.; Subramanyam, S. V. Solid State Commun. 2008, 145, 143.   DOI   ScienceOn
17 Cmoreno, J. M.; Yoshimura, M. J. Am. Chem. Soc. 2001, 123, 741.   DOI   ScienceOn
18 O'Loughlin, J. K.; Kiang, C. H.; Wallace, C. H.; Reynolds, T. K.; Rao, L.; Kaner, R. B. J. Phys. Chem. B 2001, 105, 1921.   DOI   ScienceOn
19 Mack, J. J.; Tari, S.; Kaner, R. B. Inorg. Chem. 2006, 45, 4243.   DOI   ScienceOn
20 Jiang, Y.; Wu, Y.; Zhang, S. Y.; Xu, C. Y.; Yu, W. C.; Xie, Y.; Qian, Y. T. J. Am. Chem. Soc. 2000, 122, 12383.   DOI   ScienceOn
21 Wang, X. J.; Lu, J.; Xie,Y.; Du, G.; Guo, Q. X.; Zhang, S. Y. J. Phys. Chem. B 2002, 106, 933.
22 Lee, C. Y.; Chiu, H. T.; Peng, C. W.; Yen, M. Y.; Cang, Y. H.; Liu, C. S. Adv. Mater. 2001, 13, 1105-1107.   DOI   ScienceOn
23 Liu, J.; Shao, M.; Chen, X.; Yu, W.; Liu, X.; Qian, Y. J. Am. Chem. Soc. 2003, 125, 8088.   DOI   ScienceOn
24 Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R. J. Mater Sci-Poland. 2008, 26, 433-441.
25 Wang, W.; Kunwar, S.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Nanotech. 2005, 16, 21.   DOI   ScienceOn
26 Liu, J.; Shao, M.; Tang, Q.; Zhang, S.; Qian, Y. J. Phys. Chem. B 2003, 107, 6329.   DOI   ScienceOn
27 Cheng, J.; Zhang, X.; Luo, Z.; Liu, F.; Ye, Y.; Yin, W.; Liu, W.; Han, Y. Mater. Chem. Phys. 2006, 95, 5.   DOI   ScienceOn
28 Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1930, 60, 309.
29 Tsang, S. C.; Harris, P. J. F.; Green, M. L. H. Nature 1993, 362, 520.   DOI   ScienceOn
30 Zuttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Applied Physics A 2004, 78, 941.   DOI