Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01102

Synthesis of Pd and Pt Based Low Cost Bimetallic Anode Electrocatalyst for Glycerol Electrooxidation in Membraneless Air Breathing Microfluidic Fuel Cell  

Panjiara, Deoashish (Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University))
Pramanik, Hiralal (Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University))
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 38-57 More about this Journal
Abstract
The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.
Keywords
Air-Breathing; Synthesis; Electrocatalyst; Microfluidic Fuel Cell; Glycerol Electrooxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, C. Liang, W. Li, Appl. Catal. B., 2014, 154, 360-368.   DOI
2 U.K. Gupta, H. Pramanik, J. Electrochem. Energy Convers. Storage, 2019, 16, 041005-11.   DOI
3 N. Arjona, A.J. Armenta-Gonzalez, S. Rivas, M. Guerra-Balcazar, J. Ledesma-Garcia, L.G. Arriaga, Int. J. Hydrogen Energy., 2015, 40(42), 14699-14705.   DOI
4 M. Gowdhamamoorthi, A. Arun, S. Kiruthika, B. Muthukumaran, Ionics, 2014, 20 (12), 1723-1728.   DOI
5 O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable Sustainable Energy Rev., 2014, 39, 748-764.   DOI
6 E. Kjeang, N. Djilali, D. Sinton, J. Power Sources, 2009, 186(2), 353-369.   DOI
7 K. Ponmani, S. Durga, M. Gowdhamamoorthi, S. Kiruthika, B. Muthukumaran, Ionics, 2014, 20(11), 1579-1589.   DOI
8 S.A. Shaegh, N.T. Nguyen, S.H Chan, Int. J. Hydrogen Energy, 2011, 36(9), 5675-5694.   DOI
9 A.K. Rathoure, H. Pramanik, Int. J. Hydrogen Energy, 2016, 41(34), 15287-15294.   DOI
10 A.J. Armenta-Gonzalez, R. Carrera-Cerritos, A. Moreno-Zuria, L. Alvarez-Contreras, J. Ledesma-Garcia, F.M. Cuevas-Muniz, L.G. Arriaga, Fuel, 2016, 167, 240-247.   DOI
11 A. Lopez?Coronel, E. Ortiz?Ortega, L.J. Torres?Pacheco, M. Guerra?Balcazar, L.G. Arriaga, L. Alvarez?Contreras, N. Arjona, Electrochim. Acta., 2019, 320, 134622.   DOI
12 A. Dector, F.M. Cuevas-Muniz, M. Guerra-Balcazar, L.A. Godinez, J. Ledesma-Garcia, L.G. Arriaga, Int. J. Hydrogen Energy, 2013, 38(28), 12617-12622.   DOI
13 R.G. dos Santos, A.C. Alencar, Int. J. Hydrogen Energy., 2020, 45(36), 11814-11832.   DOI
14 A. Arshad, H.M. Ali, A. Habib, M.A. Bashir, M. Jabbal, J. Therm. Sci. Eng. Process, 2019, 9, 308-321.   DOI
15 D.G. Barceloux, G. Randall Bond, E.P. Krenzelok, H. Cooper, J. Allister Vale, J. Toxicol. Clin. Toxicol., 2002, 40(4), 415-446.   DOI
16 A. Eshghi, E.S. Behbahani, M. Kheirmand, M. Ghaedi, Int. J. Hydrogen Energy, 2019, 44(52), 28194-28205.   DOI
17 M.A. Al-Saleh, S. Gultekin, A.S. Al-Zakri, A.A. Khan, Int. J. Hydrogen Energy, 1996, 21(8), 657-661   DOI
18 E. Habibi, H. Razmi, Int. J. Hydrogen Energy, 2012, 37(22), 16800-16809.   DOI
19 R. Banerjee, S.J. Kumar, N. Mehendale, S. Sevda, V.K. Garlapati, Renew. Sust. Energy Rev., 2019, 01, 548-558.
20 E.R. Choban, L.J. Markoski, A. Wieckowski, P.J. Kenis, J. Power Sources, 2004 128(1), 54-60.   DOI
21 M.H. Chang, F. Chen, N.S. Fang, J. Power Sources, 2006, 159(2), 810-816.   DOI
22 C. Liu, H. Liu, L. Liu, Int. J. Electrochem. Sci., 2019, 14(5), 4557-4570.   DOI
23 J.S. Kim, J.K. Yu, H.S. Lee, J.Y. Kim, Y.C. Kim, J.H. Han, I.H. Oh, Y.W. Rhee, Korean J. Chem. Eng., 2005, 22(5), 661-665.   DOI
24 Z. Zhang, L. Xin, W. Li, Int. J. Hydrogen Energy, 2012, 37(11), 9393-9401.   DOI
25 R.J. Gilliam, J.W. Graydon, D.W. Kirk, S.J. Thorpe, Int. J. Hydrogen Energy, 2007, 32(3), 359-364.   DOI
26 C.A. Ottoni, S.G. da Silva, R.F. De Souza, A.O. Neto, Ionics, 2016, 22(7), 1167-1175.   DOI
27 Y. Holade, C. Morais, S. Arrii-Clacens, K. Servat, T.W. Napporn, K.B. Kokoh, Electrocatalysis, 2013, 4(3), 167-178.   DOI
28 R.H. Perry and D.W Green, McGraw-Hill, 1999.
29 J. Maya-Cornejo, M. Guerra-Balcazar, N. Arjona, L. Alvarez-Contreras, F.J. Valadez, M.P. Gurrola, J. Ledesma-Garcia, L.G. Arriaga, Fuel, 2016, 183, 195-205.   DOI
30 R.M. Castagna, J.M. Sieben, A.E. Alvarez, M.M. Duarte, Int. J. Hydrogen Energy, 2019, 44(12), 5970-5982.   DOI
31 Y. Tseng, D. Scott, Energies, 2018, 11(9), 2259.   DOI
32 J.F. Gomes, L.H. Gasparotto, G. Tremiliosi-Filho, Phys. Chem. Chem. Phys., 2013 15(25), 10339-10349.   DOI
33 J. Tayal, B. Rawat, S. Basu, Int. J. Hydrogen Energy, 2011, 36(22), 14884-14897.   DOI
34 A.K. Choudhary, H. Pramanik, Int. J. Hydrogen Energy, 2020, 45(1),574-594.   DOI
35 D. Panjiara, H. Pramanik, Ionics, 2020, 26, 2435-2452.   DOI
36 A. Maghsodi, M.M. Hoseini, M.D. Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci., 2011, 257(15), 6353-6357.   DOI
37 T. Lopes, E. Antolini, E.R. Gonzalez. Int. J. Hydrogen Energy, 2008, 33(20), 5563-5570.   DOI
38 K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, J. Electrochem. Soc., 2011, 158(8), B871-B876.   DOI
39 H. Li, G. Sun, N. Li, S. Sun, D. Su, Q. Xin, J. Phys. Chem. C, 2007, 111(15), 5605-5617.   DOI
40 H. Li, Q. Xin, W. Li, Z. Zhou, L. Jiang, S. Yang, G. Sun, Chem. Commun., 2004 23, 2776-2777.
41 J.B. Joo, Y.J. Kim, W. Kim, N.D. Kim, P. Kim, Y. Kim, J. Yi, Korean J. Chem. Eng., 2008, 25(4), 770-774.   DOI
42 A.C. Garcia, V.A. Paganin, E.A. Ticianelli, Electrochim. Acta., 2008 53(12), 4309-4315.   DOI
43 M. Khan, A.B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, J. Power Sources, 2015, 282, 520-528.   DOI
44 A.K. Choudhary, H. Pramanik, Korean J. Chem Eng., 2019, 36(10),1688-1707.   DOI
45 X. Zhu, H.R. Cho, M. Pasupong, J.R. Regalbuto, ACS Catal., 2013, 3(4), 625-630.   DOI
46 F.J. Nores-Pondal, I.M. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelza, H.R. Corti, Int. J. Hydrogen Energy, 2009, 34(19), 8193-8203.   DOI
47 Y. Qian, W. Wen, P.A. Adcock, Z. Jiang, N. Hakim, M.S. Saha, S. Mukerjee, J. Phys. Chem. C, 2008, 112(4), 1146-1157.   DOI
48 A.N. Grace, K. Pandian, Electrochem. Commun., 2006, 8(8), 1340-1348.   DOI
49 Y.H. Cho, B. Choi, Y.H. Cho, H.S. Park, Y.E. Sung, Electrochem. Commun., 2007 9(3), 378-381.   DOI
50 B. Rezaei, S. Saeidi-Boroujeni, E. Havakeshian, A.A. Ensafi, Electrochim. Acta., 2016 203,41-50.   DOI
51 L. Roquet, E.M. Belgsir, J.M. Leger, C. Lamy, Electrochim. Acta., 1994, 39(16), 2387-2394.   DOI
52 M. Schell, Y. Xu, Z. Zdraveski, J. Phys. Chem., 1996, 100(49), 18962-18969.   DOI
53 M.L. Faro, M. Minutoli, G. Monforte, V. Antonucci, A.S. Arico, Biomass Bioenergy, 2011, 35(3), 1075-1084.   DOI
54 A. Ilie, M. Simoes, S. Baranton, C. Coutanceau, S. Martemianov, J. Power Sources, 2011, 196(11), 4965-4971.   DOI
55 A.A. Jazie, H. Pramanik, A.S. Sinha, Mater. Renewable Sustainable Energy, 2013, 2(2), 11.   DOI
56 E. Antolini, E.R. Gonzalez, J. Power Sources, 2010, 195(11), 3431-3450.   DOI
57 M. Simoes, S. Baranton, C. Coutanceau, Appl. Catal. B., 2010, 93(3-4), 354-362.   DOI
58 M. Simoes, S. Baranton, C. Coutanceau, Appl. Catal. B., 2011, 110, 40-49.   DOI
59 A. Maghsodi, M.M. Hoseini, M.D. Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci., 2011, 257(15), 6353-6357.   DOI
60 L. Ma, D. Chu, R. Chen, Int. J. Hydrogen Energy, 2012, 37(15), 11185-11194.   DOI
61 C. Bianchini, P.K. Shen, Chem. Rev., 2009, 109(9), 4183-4206.   DOI
62 N. Benipal, J. Qi, Q. Liu, W. Li, Appl. Catal. B., 2017, 210,121-130.   DOI
63 E. Frota Jr, A. Purgatto, J.J. Linares, Chem. Eng., 2014, 41, 253-258.
64 J. Maya-Cornejo, E. Ortiz-Ortega, L. Alvarez-Contreras, N. Arjona, M. Guerra-Balcazar, J. Ledesma-Garcia, L.G. Arriaga, Chem. Commun., 2015, 51(13), 2536-2539.   DOI
65 C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, Chem. Commun., 2018, 54(2), 192-195.   DOI
66 A.P. Nascimento, J.J. Linares, J. Braz. Chem. Soc., 2014, 25(3), 509-516.