DOI QR코드

DOI QR Code

Synthesis of Pd and Pt Based Low Cost Bimetallic Anode Electrocatalyst for Glycerol Electrooxidation in Membraneless Air Breathing Microfluidic Fuel Cell

  • Panjiara, Deoashish (Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University)) ;
  • Pramanik, Hiralal (Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University))
  • Received : 2020.06.15
  • Accepted : 2020.08.16
  • Published : 2021.02.28

Abstract

The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.

Keywords

References

  1. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable Sustainable Energy Rev., 2014, 39, 748-764. https://doi.org/10.1016/j.rser.2014.07.113
  2. A. Arshad, H.M. Ali, A. Habib, M.A. Bashir, M. Jabbal, J. Therm. Sci. Eng. Process, 2019, 9, 308-321. https://doi.org/10.1016/j.tsep.2018.12.008
  3. U.K. Gupta, H. Pramanik, J. Electrochem. Energy Convers. Storage, 2019, 16, 041005-11. https://doi.org/10.1115/1.4043156
  4. N. Arjona, A.J. Armenta-Gonzalez, S. Rivas, M. Guerra-Balcazar, J. Ledesma-Garcia, L.G. Arriaga, Int. J. Hydrogen Energy., 2015, 40(42), 14699-14705. https://doi.org/10.1016/j.ijhydene.2015.07.141
  5. M. Gowdhamamoorthi, A. Arun, S. Kiruthika, B. Muthukumaran, Ionics, 2014, 20 (12), 1723-1728. https://doi.org/10.1007/s11581-014-1142-z
  6. E. Kjeang, N. Djilali, D. Sinton, J. Power Sources, 2009, 186(2), 353-369. https://doi.org/10.1016/j.jpowsour.2008.10.011
  7. K. Ponmani, S. Durga, M. Gowdhamamoorthi, S. Kiruthika, B. Muthukumaran, Ionics, 2014, 20(11), 1579-1589. https://doi.org/10.1007/s11581-014-1118-z
  8. S.A. Shaegh, N.T. Nguyen, S.H Chan, Int. J. Hydrogen Energy, 2011, 36(9), 5675-5694. https://doi.org/10.1016/j.ijhydene.2011.01.063
  9. A.K. Rathoure, H. Pramanik, Int. J. Hydrogen Energy, 2016, 41(34), 15287-15294. https://doi.org/10.1016/j.ijhydene.2016.07.058
  10. A.J. Armenta-Gonzalez, R. Carrera-Cerritos, A. Moreno-Zuria, L. Alvarez-Contreras, J. Ledesma-Garcia, F.M. Cuevas-Muniz, L.G. Arriaga, Fuel, 2016, 167, 240-247. https://doi.org/10.1016/j.fuel.2015.11.057
  11. A. Lopez?Coronel, E. Ortiz?Ortega, L.J. Torres?Pacheco, M. Guerra?Balcazar, L.G. Arriaga, L. Alvarez?Contreras, N. Arjona, Electrochim. Acta., 2019, 320, 134622. https://doi.org/10.1016/j.electacta.2019.134622
  12. A. Dector, F.M. Cuevas-Muniz, M. Guerra-Balcazar, L.A. Godinez, J. Ledesma-Garcia, L.G. Arriaga, Int. J. Hydrogen Energy, 2013, 38(28), 12617-12622. https://doi.org/10.1016/j.ijhydene.2012.12.030
  13. R.G. dos Santos, A.C. Alencar, Int. J. Hydrogen Energy., 2020, 45(36), 11814-11832. https://doi.org/10.1016/j.ijhydene.2020.02.090
  14. D.G. Barceloux, G. Randall Bond, E.P. Krenzelok, H. Cooper, J. Allister Vale, J. Toxicol. Clin. Toxicol., 2002, 40(4), 415-446. https://doi.org/10.1081/CLT-120006745
  15. L. Roquet, E.M. Belgsir, J.M. Leger, C. Lamy, Electrochim. Acta., 1994, 39(16), 2387-2394. https://doi.org/10.1016/0013-4686(94)E0190-Y
  16. M. Schell, Y. Xu, Z. Zdraveski, J. Phys. Chem., 1996, 100(49), 18962-18969. https://doi.org/10.1021/jp961195t
  17. M.L. Faro, M. Minutoli, G. Monforte, V. Antonucci, A.S. Arico, Biomass Bioenergy, 2011, 35(3), 1075-1084. https://doi.org/10.1016/j.biombioe.2010.11.018
  18. A. Ilie, M. Simoes, S. Baranton, C. Coutanceau, S. Martemianov, J. Power Sources, 2011, 196(11), 4965-4971. https://doi.org/10.1016/j.jpowsour.2011.02.003
  19. A.A. Jazie, H. Pramanik, A.S. Sinha, Mater. Renewable Sustainable Energy, 2013, 2(2), 11. https://doi.org/10.1007/s40243-013-0011-4
  20. E. Antolini, E.R. Gonzalez, J. Power Sources, 2010, 195(11), 3431-3450. https://doi.org/10.1016/j.jpowsour.2009.11.145
  21. M. Simoes, S. Baranton, C. Coutanceau, Appl. Catal. B., 2010, 93(3-4), 354-362. https://doi.org/10.1016/j.apcatb.2009.10.008
  22. M. Simoes, S. Baranton, C. Coutanceau, Appl. Catal. B., 2011, 110, 40-49. https://doi.org/10.1016/j.apcatb.2011.08.020
  23. L. Ma, D. Chu, R. Chen, Int. J. Hydrogen Energy, 2012, 37(15), 11185-11194. https://doi.org/10.1016/j.ijhydene.2012.04.132
  24. C. Bianchini, P.K. Shen, Chem. Rev., 2009, 109(9), 4183-4206. https://doi.org/10.1021/cr9000995
  25. N. Benipal, J. Qi, Q. Liu, W. Li, Appl. Catal. B., 2017, 210,121-130. https://doi.org/10.1016/j.apcatb.2017.02.082
  26. E. Frota Jr, A. Purgatto, J.J. Linares, Chem. Eng., 2014, 41, 253-258.
  27. J. Maya-Cornejo, E. Ortiz-Ortega, L. Alvarez-Contreras, N. Arjona, M. Guerra-Balcazar, J. Ledesma-Garcia, L.G. Arriaga, Chem. Commun., 2015, 51(13), 2536-2539. https://doi.org/10.1039/c4cc08529a
  28. C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, Chem. Commun., 2018, 54(2), 192-195. https://doi.org/10.1039/C7CC08190A
  29. A.P. Nascimento, J.J. Linares, J. Braz. Chem. Soc., 2014, 25(3), 509-516.
  30. J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, C. Liang, W. Li, Appl. Catal. B., 2014, 154, 360-368. https://doi.org/10.1016/j.apcatb.2014.02.040
  31. C.A. Ottoni, S.G. da Silva, R.F. De Souza, A.O. Neto, Ionics, 2016, 22(7), 1167-1175. https://doi.org/10.1007/s11581-015-1631-8
  32. Y. Holade, C. Morais, S. Arrii-Clacens, K. Servat, T.W. Napporn, K.B. Kokoh, Electrocatalysis, 2013, 4(3), 167-178. https://doi.org/10.1007/s12678-013-0138-1
  33. J. Maya-Cornejo, M. Guerra-Balcazar, N. Arjona, L. Alvarez-Contreras, F.J. Valadez, M.P. Gurrola, J. Ledesma-Garcia, L.G. Arriaga, Fuel, 2016, 183, 195-205. https://doi.org/10.1016/j.fuel.2016.06.075
  34. R.M. Castagna, J.M. Sieben, A.E. Alvarez, M.M. Duarte, Int. J. Hydrogen Energy, 2019, 44(12), 5970-5982. https://doi.org/10.1016/j.ijhydene.2019.01.090
  35. Y. Tseng, D. Scott, Energies, 2018, 11(9), 2259. https://doi.org/10.3390/en11092259
  36. J.F. Gomes, L.H. Gasparotto, G. Tremiliosi-Filho, Phys. Chem. Chem. Phys., 2013 15(25), 10339-10349. https://doi.org/10.1039/c3cp50280e
  37. J. Tayal, B. Rawat, S. Basu, Int. J. Hydrogen Energy, 2011, 36(22), 14884-14897. https://doi.org/10.1016/j.ijhydene.2011.03.035
  38. A.K. Choudhary, H. Pramanik, Int. J. Hydrogen Energy, 2020, 45(1),574-594. https://doi.org/10.1016/j.ijhydene.2019.10.243
  39. D. Panjiara, H. Pramanik, Ionics, 2020, 26, 2435-2452. https://doi.org/10.1007/s11581-019-03385-8
  40. A.K. Choudhary, H. Pramanik, Korean J. Chem Eng., 2019, 36(10),1688-1707. https://doi.org/10.1007/s11814-019-0343-6
  41. A. Maghsodi, M.M. Hoseini, M.D. Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci., 2011, 257(15), 6353-6357. https://doi.org/10.1016/j.apsusc.2011.01.094
  42. T. Lopes, E. Antolini, E.R. Gonzalez. Int. J. Hydrogen Energy, 2008, 33(20), 5563-5570. https://doi.org/10.1016/j.ijhydene.2008.05.030
  43. K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, J. Electrochem. Soc., 2011, 158(8), B871-B876. https://doi.org/10.1149/1.3596542
  44. H. Li, G. Sun, N. Li, S. Sun, D. Su, Q. Xin, J. Phys. Chem. C, 2007, 111(15), 5605-5617. https://doi.org/10.1021/jp067755y
  45. H. Li, Q. Xin, W. Li, Z. Zhou, L. Jiang, S. Yang, G. Sun, Chem. Commun., 2004 23, 2776-2777.
  46. J.B. Joo, Y.J. Kim, W. Kim, N.D. Kim, P. Kim, Y. Kim, J. Yi, Korean J. Chem. Eng., 2008, 25(4), 770-774. https://doi.org/10.1007/s11814-008-0126-y
  47. A.C. Garcia, V.A. Paganin, E.A. Ticianelli, Electrochim. Acta., 2008 53(12), 4309-4315. https://doi.org/10.1016/j.electacta.2008.01.006
  48. M. Khan, A.B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, J. Power Sources, 2015, 282, 520-528. https://doi.org/10.1016/j.jpowsour.2015.02.090
  49. X. Zhu, H.R. Cho, M. Pasupong, J.R. Regalbuto, ACS Catal., 2013, 3(4), 625-630. https://doi.org/10.1021/cs3008347
  50. F.J. Nores-Pondal, I.M. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelza, H.R. Corti, Int. J. Hydrogen Energy, 2009, 34(19), 8193-8203. https://doi.org/10.1016/j.ijhydene.2009.07.073
  51. Y. Qian, W. Wen, P.A. Adcock, Z. Jiang, N. Hakim, M.S. Saha, S. Mukerjee, J. Phys. Chem. C, 2008, 112(4), 1146-1157. https://doi.org/10.1021/jp074929i
  52. A.N. Grace, K. Pandian, Electrochem. Commun., 2006, 8(8), 1340-1348. https://doi.org/10.1016/j.elecom.2006.06.007
  53. Y.H. Cho, B. Choi, Y.H. Cho, H.S. Park, Y.E. Sung, Electrochem. Commun., 2007 9(3), 378-381. https://doi.org/10.1016/j.elecom.2006.10.007
  54. B. Rezaei, S. Saeidi-Boroujeni, E. Havakeshian, A.A. Ensafi, Electrochim. Acta., 2016 203,41-50. https://doi.org/10.1016/j.electacta.2016.04.024
  55. A. Maghsodi, M.M. Hoseini, M.D. Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci., 2011, 257(15), 6353-6357. https://doi.org/10.1016/j.apsusc.2011.01.094
  56. A. Eshghi, E.S. Behbahani, M. Kheirmand, M. Ghaedi, Int. J. Hydrogen Energy, 2019, 44(52), 28194-28205. https://doi.org/10.1016/j.ijhydene.2019.08.236
  57. M.A. Al-Saleh, S. Gultekin, A.S. Al-Zakri, A.A. Khan, Int. J. Hydrogen Energy, 1996, 21(8), 657-661 https://doi.org/10.1016/0360-3199(95)00122-0
  58. E. Habibi, H. Razmi, Int. J. Hydrogen Energy, 2012, 37(22), 16800-16809. https://doi.org/10.1016/j.ijhydene.2012.08.127
  59. R. Banerjee, S.J. Kumar, N. Mehendale, S. Sevda, V.K. Garlapati, Renew. Sust. Energy Rev., 2019, 01, 548-558.
  60. R.H. Perry and D.W Green, McGraw-Hill, 1999.
  61. E.R. Choban, L.J. Markoski, A. Wieckowski, P.J. Kenis, J. Power Sources, 2004 128(1), 54-60. https://doi.org/10.1016/j.jpowsour.2003.11.052
  62. M.H. Chang, F. Chen, N.S. Fang, J. Power Sources, 2006, 159(2), 810-816. https://doi.org/10.1016/j.jpowsour.2005.11.066
  63. C. Liu, H. Liu, L. Liu, Int. J. Electrochem. Sci., 2019, 14(5), 4557-4570. https://doi.org/10.20964/2019.05.01
  64. J.S. Kim, J.K. Yu, H.S. Lee, J.Y. Kim, Y.C. Kim, J.H. Han, I.H. Oh, Y.W. Rhee, Korean J. Chem. Eng., 2005, 22(5), 661-665. https://doi.org/10.1007/BF02705779
  65. Z. Zhang, L. Xin, W. Li, Int. J. Hydrogen Energy, 2012, 37(11), 9393-9401. https://doi.org/10.1016/j.ijhydene.2012.03.019
  66. R.J. Gilliam, J.W. Graydon, D.W. Kirk, S.J. Thorpe, Int. J. Hydrogen Energy, 2007, 32(3), 359-364. https://doi.org/10.1016/j.ijhydene.2006.10.062