• Title/Summary/Keyword: Low resistance measurement

Search Result 260, Processing Time 0.035 seconds

Evaluation of the FSA Hand Force Measurement System (손 힘 사용 측정 FSA 시스템의 성능 평가)

  • Jung, Ki-Hyo;You, Hee-Cheon;Kwon, O-Chae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.45-49
    • /
    • 2005
  • The FSA(Force Sensitive Application) system measures hand force by using force resistance sensors. Compared to conventional hand force measurement systems such as Lafayette hand dynamometer and Jamar hydraulic hand dynamometer, the FSA system can be applied to analyze use of hand forces while the hand is manipulating objects for a task, However, the measurement performance of the FSA system has not been objectively evaluated. The present study tested the FSA system in terms of stability, repeatability, accuracy, and linearity. It is shown that the FSA system has good stability (CV$\leq$0.02) and linearity($R^2$=0.82), but has low repeatability(CV=$0.11{\sim}0.19$) and accuracy(22% of underevaluation on average). This performance result indicates that measurements from the FSA system should be used for relative comparison rather than for absolute comparison.

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

DC Influence Between Pixel Electrode and Alignment Layer in In-plane Switching Mode LCD

  • Lim, Young-Nam;Lee, Tae-Rim;Park, Byoung-Gyu;Roh, Seung-Kwang;Kim, Hyun-Chul;Kim, Hyun-Seung;Kim, Kyeong-Jin;Shin, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.677-680
    • /
    • 2009
  • DC influence between pixel electrode and alignment layer (AL) in in-plane switching mode LCD was analyzed through DC equivalence-circuit equation induction, DC charge-discharge simulation, luminance and residual-DC measurement systems using test patterned (TP) cell. DC discharging rate (DDR) of single layer electrode was faster than that of double layer electrode and DDR of low resistance AL was faster than that of high resistance AL. DC discharging characteristics had a close relation to layer number and resistance between two electrodes.

  • PDF

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Design and Characteristics of Modern Power MOSFETs for Integrated Circuits

  • Bang, Yeon-Seop
    • The Magazine of the IEIE
    • /
    • v.37 no.8
    • /
    • pp.50-59
    • /
    • 2010
  • $0.18-{\mu}m$ high voltage technology 13.5V high voltage well-based symmetric EDMOS isolated by MTI was designed and fabricated. Using calibrated process and device model parameters, the characteristics of the symmetric and asymmetric EDMOS have been simulated. The asymmetric EDMOS has higher performance, better $R_{sp}$ / BVDSS figure-of-merit, short-channel immunity and smaller pitch size than the symmetric EDMOS. The asymmetric EDMOST is a good candidate for low-power and smaller source driver chips. The low voltage logic well-based EDMOS process has advantages over high voltage well-based EDMOS in process cost by eliminating the process steps of high-voltage well/drift implant, high-temperature long-time thermal steps, etc. The specific on-resistance of our well-designed logic well-based EDMOSTs is compatible with the smallest one published. TCAD simulation and measurement results show that the improved logic well-based nEDMOS has better electrical characteristics than those of the conventional one. The improved EDMOS proposed in this paper is an excellent candidate to be integrated with low voltage logic devices for high-performance low-power low-cost chips.

  • PDF

A Study on the electrical Characteristics of High Voltage LDMOSFET in Low Temperature (고내압 LDMOSFET의 저온 특성에 관한 연구)

  • Park, Jae-Hyuong;Lee, Ho-Young;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.201-204
    • /
    • 2001
  • LDMOSFET devices operated at low temperature have applications on satellite, space shuttle and low temperature system, etc. In this study, we measured the electrical characteristics of 100v Class LDMOSFET for low temperature application. Measurement data are taken over a wide range of temperatures (100K-300K) and various drift region lengths(6.6${\mu}{\textrm}{m}$, 8.4${\mu}{\textrm}{m}$, 12.6${\mu}{\textrm}{m}$). Maximum transconductance, $g_{m}$ and drain current at low temperatures(~100K) increased over about 260%, 50% respectively, in comparison with the data at room temperature. Breakdown voltage B $V_{ds}$, and specific on- resistance decreased. Besides, ratio $R_{on}$ BV, a figure of merit of the device, decreased with decreasing temperature.

  • PDF

Low-resistance ohmic contacts to p-$Hg_{0.7}$$Cd_{0.3}$Te (p-$Hg_{0.7}$$Cd_{0.3}$Te에 낮은 저항의 접촉을 얻는 방법에 대한 연구)

  • Kim, Kwan;Chung, Han;Kim, Sung-Chul;Lee, Hee-Chul;Kim, Choong-Ki;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.87-93
    • /
    • 1994
  • Ohmic contacts between Au and p-HgHg_{0.7}Cd_{0.3}Te$ with low specific contact resistance have been obtained. The contact region of the wafer is first pre-heated for 5 seconds in a rapid thermal processing equipment. The temperature reaches a maximum value of about 200$^{\circ}C$ at the end of the 5 seconds. Next, a thin Au film is formed on the contact region by immersing the sample in AuCl$_{3}$ solution. the sample is then post-annealed in the same condition as the pre-heating after Pb/In pad metals are deposited on the electroless Au contacts. The specific contact resistance measured by transmission line model is 5${\times}10^{-3}{\Omega}cm^{2}$ at 80K. RBS and differential Hall measurement data suggest that the above low resistance ohmic contact is ascribed to surface traps and increased gold diffusion rate.

  • PDF

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends (Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성)

  • Park, Chan-Young;Hwang, Young-Bea
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.

Measurement and Analysis of Transient Grounding Resistance with the Pulse Generator (펄스발생기에 의한 과도접지저항의 측정과 분석)

  • Park, J.S.;Yang, J.J.;Lee, K.O.;Lee, B.H.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1864-1866
    • /
    • 1996
  • Grounding is the art of making an electrical connection to the earth. In order to protect man, electrical and/or electric equipments from the lightning strokes, all the energy of lightning strokes must be diverted via a safe path to earth. It is essential to the transient grounding resistance against lightning strokes. In this paper, measurements and analyses of grounding surge impedance have been investigated. For measurements of grounding surge impedance the pulse generator was designed and fabricated. The pulse generator has rise time of 22.4 ns and pulse duration of $8\;{\mu}s$. The transient grounding resistance has been measuring by injecting low power and step current between the earthing system under test and a remote reference earth and measuring the potential rise caused by this current. As a result, the transient grounding resistance against lightning surge in the short time domain is much higher than steady state grounding resistance.

  • PDF