• Title/Summary/Keyword: Low molecular weight polymer

Search Result 231, Processing Time 0.026 seconds

Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification (아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성)

  • 류원석;한성수;최진현;유상우;홍성일
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.610-620
    • /
    • 2000
  • Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

  • PDF

Antibacterial Activity of Low Molecular Weight Water-Soluble Chitosan (저분자량 수용성 키토산의 항균 활성에 관한 연구)

  • Park, Yoon-Kyung;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.419-423
    • /
    • 2011
  • Chitosan is a natural polymer derived from chitin that has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. In addition, water-soluble chitosan has been used to enhance the stability of chitosan in water and reduce cytotoxic activity induced by acetic acid. In this study, the antibiotic activity and mechanism of low molecular weight water-soluble chitosan (LMWSC; MW1, MW3, MW5, and MW10) were examined in pathogenic bacteria cells and vesicles containing bacterial membrane lipids. MW10 displayed potent antibacterial activity against pathogenic bacteria strains and no cytotoxicity against mammalian cells. In addition, the degree of calcein leakage was examined as a function of lipid composition (PE/PG=7/3 w/w). The results of these experiments demonstrated that MW10 promoted leakage in negatively-charged membranes. Furthermore, confocal microscopy revealed that MW10 was located in the plasma membrane.

Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black (다양한 농도의 카본블랙을 함유하는 폴리스티렌 및 폴리뷰틸메타크릴레이트 복합체 입자의 유동성)

  • Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.336-342
    • /
    • 2009
  • We measured shear viscosity of polystyrene (PS) and poly(butyl methacrylate) (PBMA) particles, with a capillary rheometer, prepared by suspension polymerization with 1.0 wt% hydrophobic silica as a stabilizer by varying the initiator concentration at $75^{\circ}C$. PS particles with weight average molecular weight of 66,500 g/mol displayed a Newtonian behaior at low shear rates at $190^{\circ}C$. With increasing molecular weight, PS particles showed shear thinning over the entire range of shear rates. For PBMA particles, steady shear measurement was carried out at $170^{\circ}C$. PBMA particles with weight average molecular weight of 156,700 g/mol showed a Newtonian behaior only at low shear rates. PBMA particles also showed shear thinning with an increase in molecular weight and its pattern similar to that of PS. When carbon black was incorporated into PS and PBMA polymers, steady shear measurement was conducted at $170^{\circ}C$. An increase in carbon black concentration in PS and PBMA composite particles exhibited a progressive increase in shear viscosity. The increase in shear viscosity, however, was less pronounced compared to an increase as a function of molecular weight. Preparing PS composites containing carbon black by internal mixing resulted in an increase in shear viscosity. Its increase, however, was found to be less than that shown in PS composite particles. We speculate that this is caused by an enhanced dispersion of carbon black particles with an internal mixer. Yield behavior was not observed in any of the samples we selected in this experiment.

Microstructural Changes in Orthopaedic-Grade Ultra High Molecular Weight Polyethylene (UHMWPE) according to Gamma-Irradiation Method (감마선 조사 방법에 따른 정형외과용 초고분자량 폴리에틸렌의 미세구조 변화)

  • Lee, Kwon-Yong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.454-458
    • /
    • 2010
  • In this study, the microstructural changes in orthopaedic-grade ultra high molecular weight polyethylene (UHMWPE) were compartively investigated for six different gamma-irradiation methods. Compared with un-irradiation (UGI), conventional gamma-irradiation in air room temperature (AR) induced statistically significant increases of relative crystallinity and percent crosslinking in UHMWPE. Vacuum environment (VR) during gamma-irradiation significantly increased the percent crosslinking in UHMWPE. Vacuum extreme low temperature (V77) during gamma-irradiation induced no significant changes in both relative crystallinity and percent crosslinking of UHMWPE but the percent crosslinking of UHMWPE in VR and V77 was significantly larger than that in AR. Post-irradiation stabilization process significantly increased the relative crystallinity of UHMWPE in V77, and it also significantly increased the percent crosslinking of UHMWPE in AR and V77.

Waterborne Core-shell Pressure Sensitive Adhesive (PSA) Based on Polymeric Nano-dispersant (고분자 분산제를 이용한 Core-shell 수성 감압점착제)

  • Lee, Jin-Kyoung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • An environmentally friendly water-based pressure sensitive adhesive (PSA) was designed in an attempt to replace the solvent-based adhesive for dry lamination used in flexible food packaging films. Instead of using a low molecular weight surfactant, which may have variable material properties, a high molecular weight dispersant was used for emulsification. A polymeric nano-dispersant (PND) was synthesized using solution polymerization, and it was used as a micelle seed in the surfactant, resulting in the synthesis of a core/shell grafted acrylic adhesive. The shell and core exhibited different $T_g$ values, so that the initial adhesion strength and holding power were complemented by the film's flexibility, which is required to provide good adhesion of thin films. Results showed that the PSA designed in this study using the PND instead of traditional low molecular weight surfactant had adhesive properties applicable to the flexible packaging with appropriate tack.

Preparation of Elastic Branched Copolyester for Toner Binder: Effects of Branching Agents (토너 바인더용 분지화된 탄성 폴리에스테르 공중합체의 합성: 분지제의 영향)

  • Roh, Hyung-Jin;Lim, Jong-Kwan;Lee, Dong-Ho;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.440-447
    • /
    • 2012
  • The branched copolyester was synthesized and its molecular weight, $T_g$, 1/2 method temperature ($T_{1/2}$) and rheological properties were characterized for the application of toner binder. The linear copolyester had low molecular weight and melt elasticity obtained by dimethylterephthalate (DMT), ethylene glycol (EG) and 2,2-bis(4-(2-hydroxypropoxy) phenyl)propane (HPP). The branched copolyesters prepared with various branching agents such as 2-(hydroxymethyl)-2-ethylpropane-1,3-diol (trimethylol propane, TMP), 2,2-bi(hydroxymethyl)-1,3-propanediol (pentaerythritol, PER), 1,2,4-benzenetricarboxylic anhydride (trimellitic anhydride, TMA) and glycerol to improve the physical properties of the linear copolyester. The effect of branching agents on the molecular weight and melt elasticity of the branched copolyester was examined. The branched copolyesters prepared by adding over 15 mol% of branching agent showed relatively high molecular weight and melt elasticity, and $T_{1/2}$ value of $140^{\circ}C$. Therefore, the highly branched copolyesters were deemed suitable as a hot-melt toner of laser print process.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

New Tridentate Ligands with Mixed Donor Atoms for Cu-Based Atom Transfer Radical Polymerization

  • Cho, Hong-Youl;Han, Byung-Hui;Kim, Il;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.539-544
    • /
    • 2006
  • 2-Furancarboxaldehyde-2-pyridinylhydrazone (FPH) and 5-methyl-2-furancarboxaldehyde-2-pyridinylhydrazone (MFPH) were synthesized and used as tridentate ligands of copper (I) bromide for the atom transfer radical polymerization of methyl methacrylate (MMA) and styrene. The polymerization of methyl methacrylate achieved high conversion and yielded polymers with a good control of molecular weight and low polydispersity (PDI=1.33). Higher PDI were observed in the polymerization of styrene. Using 1-phenyl ethylbromide (PEBr) and ethyl 2-bromoisobutyrate (EBiB) as model compounds for the polymeric chain ends, the activation rate constants of the new catalytic systems were measured. These results were correlated with the polymerization results and compared with another catalytic system previously reported.

Reaction Kinetics for the Synthesis of Oligomeric Poly (lactic acid)

  • Yoo Dong Keun;Kim Dukjoon;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • A low-molecular-weight poly(lactic acid) was synthesized through the condensation reaction of L-lactic acid. The effects that the catalyst and temperature have on the reaction rate were studied to determine the optimum reaction conditions. The reaction kinetics increased with temperature up to $210^{\circ}C$, but no further increase was observed above this temperature. Among a few selective catalysts, sulfuric acid was the most effective because it maximized the polymerization reaction rate. Reduction of the pressure was another important factor that enhanced this reactions kinetics.

Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone

  • Min, Byoung-Sun;Ko, Seung-Won
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.225-233
    • /
    • 2007
  • To improve the poor mechanical and low-temperature properties of glycidyl azide polymer (GAP)-based propellants, the addition of binders was investigated using GAP and flexible polymer backbone-structural polycaprolactone (PCP) at various weight(wt) ratios, and varying the ratio of Desmodur N-100 pluriisocyanate (N-100) to isophorone diisocyanate (IPDI). Using Gee's theory, the solubility parameter of the PCP network was determined, in order to elucidate the physical and chemical interaction between GAP and PCP. The structure of the binder networks was characterized by measuring the cross-link densities and molecular weights between cross-links ($M_c$) obtained by a swelling experiment using Flory-Rhener theory. The thermal and mechanical properties of the segmented block copolyurethane (GAP-b-PCP) binders prepared by the incorporation of PCP into the binder recipes were investigated, along with the effect of the different curatives ratios.