Browse > Article

Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black  

Park, Moon-Soo (Department of Polymer Engineering, University of Suwon)
Publication Information
Elastomers and Composites / v.44, no.3, 2009 , pp. 336-342 More about this Journal
Abstract
We measured shear viscosity of polystyrene (PS) and poly(butyl methacrylate) (PBMA) particles, with a capillary rheometer, prepared by suspension polymerization with 1.0 wt% hydrophobic silica as a stabilizer by varying the initiator concentration at $75^{\circ}C$. PS particles with weight average molecular weight of 66,500 g/mol displayed a Newtonian behaior at low shear rates at $190^{\circ}C$. With increasing molecular weight, PS particles showed shear thinning over the entire range of shear rates. For PBMA particles, steady shear measurement was carried out at $170^{\circ}C$. PBMA particles with weight average molecular weight of 156,700 g/mol showed a Newtonian behaior only at low shear rates. PBMA particles also showed shear thinning with an increase in molecular weight and its pattern similar to that of PS. When carbon black was incorporated into PS and PBMA polymers, steady shear measurement was conducted at $170^{\circ}C$. An increase in carbon black concentration in PS and PBMA composite particles exhibited a progressive increase in shear viscosity. The increase in shear viscosity, however, was less pronounced compared to an increase as a function of molecular weight. Preparing PS composites containing carbon black by internal mixing resulted in an increase in shear viscosity. Its increase, however, was found to be less than that shown in PS composite particles. We speculate that this is caused by an enhanced dispersion of carbon black particles with an internal mixer. Yield behavior was not observed in any of the samples we selected in this experiment.
Keywords
capillary rheometer; polymeric particles; carbon black; polymer composite particles; shear thinning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Gu, J. Ren, and Q. Wang, 'Rheology of poly(propylene)/clay nanocomposites', J. Appl. Polym. Sci., 91, 2427 (2004)   DOI   ScienceOn
2 G. N. Jimenez, N. Ogata, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of poly ($\varepsilon$-caprolactone)-clay blend', J. Appl. Polym. Sci., 64, 2221 (1997)   DOI   ScienceOn
3 P. Ghosh and A. Chakrabarti, 'Effect of incorporation of conducting carbon black as filler on melt rheology and relaxation behavior of ethylene-propylene-diene monomer (EPDM)', Euro. Polym. J., 36, 607 (2000)   DOI   ScienceOn
4 A. Lazaridou, C. G. Biliaderis, and V. Kontogiorgos, 'Molecular weight effects on solution rheology of pullulan and mechanical properties of its films', Carbohydrate Polym., 52, 151 (2003)   DOI   ScienceOn
5 J. He, B. Yan, S. Wang, Y. Zeng, and Y. Wang, 'The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystals', Eur. Polym. J., 43, 2745 (2007)   DOI   ScienceOn
6 J. Brandrup and E. H. Immergut, 'Polymer Handbook 3rd ed.', p. II-70 & 75, J. Wiley & Sons, New York 1989
7 L. Sun, M. Park, and R. Salovey, 'Model filler polymers VII. Flow Behavior of Polymers containing monodisperse crosslinked polymeric beads', Polym. Eng. Sci., 32, 777 (1992)   DOI
8 Z. Demjen, B. Pukanszky, and J. Nagy, 'Evaluation of interfacial interaction in polypropylene/surface treated CaCO$_3$ composites', Composites, 29A, 323 (1998)   DOI   ScienceOn
9 M. Alexandre and P. Dubois, 'Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials', J. Mater. Sci. Eng., 28, 1 (2000)   DOI   ScienceOn
10 T. D. Lam, T. V. Hong, D. T. Quang, and J. S. Kim, 'Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO$_3$/polypropylene nanocomposites', Mat. Sci. Eng. A, 501, 87 (2009)   DOI   ScienceOn
11 J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, J. Vazquez-Torres, L. F. Garfias-Mesias, and D. R. Paul, 'Thermal degradation of commercially available organoclays studied by TGA-FTIR', Thermochimica Acta, 457, 92 (2007)   DOI   ScienceOn
12 J. Moon and M. Park, 'Preparation of poly(butyl methacrylate) composite beads containing carbon black by suspension polymerization', Elastomer, 43, 157 (2008)
13 S. Hambir, N. Bulakh, and J. P. Jog, 'Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic Mechanical Behavior', Polym. Eng. Sci., 42, 1800 (2002)   DOI   ScienceOn
14 C. A. Wah, L. Y. Choong, and G. S. Neon, 'Effects of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled propylene', Euro. Polym. J., 36, 789 (2000)   DOI   ScienceOn
15 C. Zhao, H. Qin, F. Gong, M. Feng, S. Zhang, and M. Yang, Mechanical, 'Thermal and flammability properties of polyethylene/clay nanocomposites', Polym. Degradation and Stability, 87, 183 (2005)   DOI   ScienceOn
16 M. Park, 'Preparation of polymer beads by suspension polymerization with hydrophobic silica as a stabilizer in aqueous solution', Polymer(Korea), 30, 498 (2006)
17 M. Park and R. Salovey, 'Rheological Behavior of Low Molecular Weight Polystyrene Composites Containing Monodisperse Crosslinked Polystyrene Beads', Polym. Comp., 20, 534 (1999)   DOI
18 D. B. Zax, D. K. Ynag, R. A. Santos, H. Hegemann, E. P. Giannels, and E. P. Manias, 'Dynamical heterogenity in nanoconfined polystyrene chains', J. Chem. Phys., 112, 2945 (2000)   DOI   ScienceOn
19 M. P. Grosvenor and J. N. Staniforth, 'The effect of molecular weight on the rheological properties of poly($\varepsilon$-caprolactone)', Inter. J. Pharm., 135, 103 (1996)   DOI   ScienceOn
20 J. Shen, G. Ji, B. Hu, and Y. Huang, 'Effect of filler size and surface treatment on impact and rheological properties of wollastonite-polypropylene composite', J. Mater. Sci. Lett., 12, 1344 (1993)   DOI
21 S. C. Tsai and B. Viers, 'Effects of liquid polarity on rheology of noncolloidal suspensions', J. Rheol., 31, 483 (1987)   DOI   ScienceOn
22 C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, . R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, 'Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites', J. Polym. Sci., Part B: Polym. Phys., 40, 852 (2002)   DOI
23 S. Peeterbroeck, L. Breugelcuans, M. Alexandre, J. Bnagy, P. Viville, R. Lazzaroni, and P. Dubois, 'The influence of the matrix polarity on the morphology and properties of ethylene vinyl acetate copolymers-carbon nanotube nanocomposites', Comp. Sci. Tech., 6, 1659 (2007)   DOI   ScienceOn