Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification

아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성

  • 류원석 (영남대학교 공과대학 섬유패션학부) ;
  • 한성수 (영남대학교 공과대학 섬유패션학부) ;
  • 최진현 (서울대학교 공과대학 섬유고분자공학과) ;
  • 유상우 (서울대학교 공과대학 섬유고분자공학과) ;
  • 홍성일 (서울대학교 공과대학 섬유고분자공학과)
  • Published : 2000.09.01

Abstract

Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

아세트산비닐(VAc)을 아조비스디메틸발레로니트릴(ADMVN) 및 삼차부틸알코올 (TBA)을 각각 개시제 및 용매로 하여 30, 40 및 5$0^{\circ}C$에서 용액중합하였다. 합성된 폴리아세트산비닐 (PVAc)을 비누화함으로써 고분자량 혼성배열 폴리비닐알코올(PVA)을 제조하였다. 중합조건들이 전환률, 가지화도 및 PVAc와 PVA의 분자량에 미치는 영향을 고찰하였다. TBA에서의 VAc의 중합 속도는 ADMVN 농도의 0.49승에 비례하였고, 이는 이론치 0.5와 잘 일치하였다. 저온에서 개시가 가능한 ADMVN 및 낮은 사슬이동상수를 갖는 TBA를 사용함으로써 고분자량 및 고수율의 PVA가 얻어졌다. PVAc의 평균 중합도는 전환률 약 35%부터 70%의 범위에서 10000~13000이었고, 이를 비누화하여 얻은 PVA의 평균 중합도는 2400~6100이었다. 교대배열 다이애드기 함량은 중합온도를 낮춤에 따라 조금씩 증가하였고, 중합시 TBA의 입체장애 효과 때문에 TBA의 양을 증가시킴에 따라서도 증가하였다.

Keywords

References

  1. Encyclopedia of Polymer Science and Technology v.17 F. L. Marten;H. F. Mark(ed.);N. M. Bikales(ed.);C. G. Overberger(ed.);G. Menges(ed.);J. I. Kroschwitz(ed.)
  2. Polyvinyl Alcohol K. Toyoshima;C. A. Finch(ed.)
  3. Polyvinyl Alcohol Fibers I. Sakurada;M. Lewin(ed.)
  4. Polyvinyl Alcohol-Development M. Masuda;C. A. Finch(ed.)
  5. Polymer v.37 W. S. Lyoo;W. S. Ha
  6. Polym. Eng. Sci. v.37 W. S. Lyoo;B. C. Kim;W. S. Ha
  7. Polym. J. v.30 W. S. Lyoo;B. C. Kim;W. S. Ha
  8. Macromolecules v.32 J. D. Cho;W. S. Lyoo;S. N. Chvalun;J. Blackwell
  9. U. S. Patent, 3,303,174 R. Lanthier
  10. USSR Patent, 507,590 A. Y. Sorokin;V. A. Kuznetsova;T. D. Korneva
  11. USSR Patent, 594,124 M. E. Rozenberg;K. V. Brlogorodskaya;N. P. Kukushkina;O. A. Pigulevskaya
  12. USSR Patent, 1,016,305 A. F. Nikolaev;K. V. Brlogorodskaya;N. P. Kukushkina;O. A. Pigulevskaya
  13. US Patent, 4,463,138 T. C. Wu;J. C. West
  14. Japan Patent, 62-064,807 K. Kamiake;F. Ueda
  15. Polym. J. v.22 T. Yamamoto;S. Seki;R. Fukae;O. Sangen;M. Kamachi
  16. Polymer J. v.28 Y. J. Kwark;W. S. Lyoo;W. S. Ha
  17. Colloid Polym. Sci. v.276 W. S. Lyoo;S. G. Lee;J. P. Kim;S. S. Han;C. J. Lee
  18. Inter. J. Polym. Mater. v.46 W. S. Lyoo;C. J. Lee;K. H. Park;N. Kim;B. C. Kim
  19. Polym. J., Short Commum. v.19 T. Yamamoto;S. Seki;M. Hirota;M. Kamachi
  20. Polym. J. v.23 T. Yamamoto;S. Yoda;H. Takase;T. Saso;O. Sangen;R. Fukae;M. Kamachi;T. Sato
  21. J. Polym. Sci., Polym. Chem. v.35 W. S. Lyoo;W. S. Ha
  22. Macromolecules v.31 W. S. Lyoo;J. Blackwell;H. D. Ghim
  23. Polymer v.40 W. S. Lyoo;W. S. Ha
  24. J. Polym. Sci., Polym. v.10 K. Ito
  25. US Patent, 2,582,055 L. M. Minsk;E. W. Taylor
  26. J. Polym. Sci. v.10 A. Conix;J. Smets
  27. J. Polym. Sci. v.17 S. Okamura;T. Motoyama
  28. J. Polym. Sci. v.29 C. H. Bamford;A. D. Jenkins;R. Johnston
  29. Preparative Methods of Polymer Chemistry W. R. Sorenson:T. W. Campbell
  30. Macromol. Chem. v.108 M. Ueda;K. Kajitani
  31. J. Polym. Sci. v.5 W. R. Conn;H. T. Neher
  32. Kobunshi Kagaku v.10 J. Ukita
  33. J. Polym. Sci. v.45 N. L. Zutty;F. J. Welch
  34. Kobunshi Kakaku v.19 K. Noro;H. Takida
  35. Japan Patent, 37-10,593 K. Noro;H. Takida
  36. Kobunshi Kagaku v.20 K. Hashimoto;Y. Sakaguchi
  37. Kobunshi Kagaku v.20 K. Hashimoto;Y. Sakaguchi
  38. J. Polym. Sci. v.4 H. N. Friedlander;H. E. Harris;J. G. Pritchard
  39. Japan Patent, 44-27,818 K. Noro;M. Okamoto
  40. USSR Patent, 712,723 S. S. Ivanchev;L. V. Shumnyi; V. V. Konovalenk;M. E.. Rozengerg;L. L. EzhenKova;T. V. Trapeznikova
  41. J. Korean Fiber Soc. v.33 W. S. Lyoo;Y. J. Kwark;W. S. Ha
  42. J. Polym. Sci., Polym Chem. v.24 K. Imai;T. Shiomi;N. Oda;H. Otsuka
  43. J. Polym. Sci., Polym. Chem. v.26 K. Imai;T. Shiomi;Y. Tezuka;T. Kawanishi;T. Jin
  44. Eur. Polym. J., Short Commum. v.33 W. S. Lyoo;B. C. Kim;C. J. Lee;W. S. Ha
  45. Polymer Handbook J. Brandrup;E. H. Immergut;E. A. Grulke
  46. Kobunshi Kagaku v.11 A. Nakajima
  47. Chain Structure and Conformation of Macromolecules F. A. Bovey;L. W. Jelinski
  48. J. Korean Fiber Soc. v.33 W. S. Lyoo;B. J. Kim;W. S. Ha
  49. Mordern Liquied Phase Kinetics B. G. Cox