Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.6.694

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells  

Do, Thu Trang (Department of Polymer Engineering, Pukyong National University)
Ha, Ye Eun (Department of Polymer Engineering, Pukyong National University)
Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
Publication Information
Polymer(Korea) / v.37, no.6, 2013 , pp. 694-701 More about this Journal
Abstract
A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).
Keywords
polymer solar cells; conjugated polymer; phthalimide; stille coupling reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Yang and J. Loos, Macromolecules, 5, 1353 (2007).
2 Y. Y. Liang, Y. Wu, D. Q. Feng, S. T. Tsai, H. J. Son, G. Li, and L. P. Yu, J. Am. Chem. Soc., 131, 56 (2009).   DOI   ScienceOn
3 W. Cai, X. Gong, and Y. Cao, Sol. Energ. Mater. Sol. Cells, 94, 114 (2010).   DOI   ScienceOn
4 X. Guo, H. Xin, F. S. Kim, A. D. T. Liyanage, S. A. Jenekhe, and M. D. Watson, Macromolecules, 44, 269 (2011).   DOI   ScienceOn
5 E. Wang, L. Hou, Z. Wang, Z. Ma, S. Hellstrom, W. Zhuang, F. Zhang, O. Inganas, and M. R. Andersson, Macromolecules, 44, 2067 (2011).   DOI   ScienceOn
6 E. Jin, C. Du, M. Wang, W. Li, C. Li, H. Wei, and Z. Bo, Macromolecules, 45, 7843 (2012).   DOI   ScienceOn
7 Z. G. Zhang and J. Wang, J. Mater. Chem., 22, 4178 (2012).   DOI   ScienceOn
8 M. Y. Jo, S. J. Park, T. Park, Y. S. Won, and J. H. Kim, Org. Electron., 13, 2185 (2012).   DOI   ScienceOn
9 S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc., 133, 4625 (2011).   DOI   ScienceOn
10 T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc., 133, 4250 (2011).   DOI   ScienceOn
11 C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, and J. R. Reynolds, J. Am. Chem. Soc., 133, 10062 (2011).   DOI   ScienceOn
12 J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, Adv. Mater., 24, 5267 (2012).   DOI   ScienceOn
13 L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, and J. Hou, Macromolecules, 45, 6923 (2012).   DOI   ScienceOn
14 J. W. Lee, Y. S. Choi, and W. H. Jo, Org. Electron., 13, 3060 (2012).   DOI   ScienceOn
15 P. Ding, C. Zhong, Y. Zou, C. Pan, H. Wu, and Y. Cao, J. Phys. Chem. C, 115, 16211 (2011).   DOI   ScienceOn
16 J. M. Jiang, P. A. Yang, T. H. Hsieh, and K. H. Wei, Macromolecules, 44, 9155 (2011).   DOI
17 M. Wang, C. Li, A. Lv, Z. Wang, and Z. Bo, Macromolecules, 45, 3017 (2012).   DOI   ScienceOn
18 R. T. Weitz, K. Amsharov, U. Zschieschang, E. B. Villas, D. K. Goswami, M. Burghard, H. Dosch, M. Jansen, K. Kern, and H. Klauk, J. Am. Chem. Soc., 130, 4637 (2008).   DOI   ScienceOn
19 D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas, and B. Batlogg, J. Appl. Phys., 98, 064502/1 (2005).
20 S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 89, 112108 (2006).   DOI   ScienceOn
21 H. Xin, X. Guo, G. Ren, M. D. Watson, and S. A. Jenekhe, Adv. Energ. Mater., 2, 575 (2012).   DOI   ScienceOn
22 M. Zhang, X. Guo, Z. G. Zhang, and Y. Li, Polymer, 52, 5464 (2011).   DOI   ScienceOn
23 J. Y. Lee, K. W. Song, J. R. Ku, T. H. Sung, and D. K. Moon, Sol. Energ. Mater. Sol. Cells, 95, 3377 (2011).   DOI   ScienceOn
24 C. Topacli, A. Topacli, M. Civan, F. Ercan, M. Durmu, and V. Ahsen, Thin Solid Films, 516, 8299 (2008).   DOI   ScienceOn
25 J. Y. Lee, S. M. Lee, K. W. Song, and D. K. Moon, Eur. Polym. J., 48, 532 (2012).   DOI   ScienceOn
26 F. Babudri, S. R. Cicco, L. Chiavarone, G. M. Farinola, L. C. Lopez, F. Naso, and G. Scamarcio, J. Mater. Chem., 10, 1573 (2000).   DOI   ScienceOn
27 J. Sleven, C. G. Walrand, and K. Binnemans, Mater. Sci. Eng. C, 18, 229 (2001).   DOI   ScienceOn
28 V. Wintgens and C. Amiel, J. Photochem. Photobiol. A, 168, 217 (2004).   DOI   ScienceOn
29 A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J. Pouliot, C. L. Pérusse, and M. Leclerc, Adv. Funct. Mater., 21, 718 (2011).   DOI   ScienceOn
30 M. Helgesen, S. A. Gevorgyan, F. C. Krebs, and R. A. J. Janssen, Chem. Mater., 21, 4669 (2009).   DOI   ScienceOn
31 J. F. Lee, S. L. C. Hsu, P. I. Lee, H. Y. Chuang, J. S. Chen, and W. Y. Chou, J. Polym. Sci. Part A: Polym. Chem., 49, 4618 (2011).   DOI   ScienceOn
32 S. Wakim, S. Beaupre, N. Blouin, B. R. Aich, S. Rodman, R. Gaudiana, Y. Tao, and M. Leclerc, J. Mater. Chem., 19, 5351 (2009).   DOI   ScienceOn
33 R. C. Coffin, J. Peet, J. Rogers, and G. C. Bazan, Nat. Chem., 1, 657 (2009).   DOI   ScienceOn
34 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. N. Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008).   DOI   ScienceOn
35 D. Baran, A. Balan, T. Stubhan, T. Ameri, L. Toppare, and C. J. Brabec, Synth. Met., 162, 2047 (2012).   DOI   ScienceOn
36 A.V. Patil, W. H. Lee, K. Kim, H. Park, I. N. Kang, and S. H. Lee, Polym. Chem., 2, 2907 (2011).   DOI   ScienceOn
37 H. Xin, X. Guo, F. S. Kim, G. Ren, M. D. Watson, and S. A. Jenekhe, J. Mater. Chem., 19, 5303 (2009).   DOI   ScienceOn
38 G. Y. Chen, Y. H. Cheng, Y. J. Chou, M. S. Su, C. M. Chen, and K. H. Wei, Chem. Commun., 47, 5064 (2011).   DOI   ScienceOn
39 G. Zhang, Y. Fu, Q. Zhang, and Z. Xie, Macromol. Chem. Phys., 211, 2596 (2010).   DOI   ScienceOn
40 Y. Zhang, S. K. Hau, H. L. Yip, Y. Sun, O. Acton, and A. K. Y. Jen, Chem. Mater., 22, 2696 (2010).   DOI   ScienceOn
41 E. Hauff, J. Parisi, and V. Dyakonov, Thin Solid Films, 511, 506 (2006).
42 J. Nakamura, K. Murata, and K. Takahashi, Appl. Phys. Lett., 87, 132105 (2005).   DOI   ScienceOn
43 J. Liu, Y. Shi, and Y. Yang, Adv. Funct. Mater., 11, 420 (2001).   DOI   ScienceOn
44 N. Berton, C. Ottone, V. Labet, R. Bettignies, S. Bailly, A.Grand, C. Morell, S. Sadki, and F. Chandezon, Macromol. Chem. Phys., 212, 2127 (2011).   DOI   ScienceOn