Browse > Article

Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone  

Min, Byoung-Sun (RDC-4-5, Agency for Defense Development)
Ko, Seung-Won (RDC-4-5, Agency for Defense Development)
Publication Information
Macromolecular Research / v.15, no.3, 2007 , pp. 225-233 More about this Journal
Abstract
To improve the poor mechanical and low-temperature properties of glycidyl azide polymer (GAP)-based propellants, the addition of binders was investigated using GAP and flexible polymer backbone-structural polycaprolactone (PCP) at various weight(wt) ratios, and varying the ratio of Desmodur N-100 pluriisocyanate (N-100) to isophorone diisocyanate (IPDI). Using Gee's theory, the solubility parameter of the PCP network was determined, in order to elucidate the physical and chemical interaction between GAP and PCP. The structure of the binder networks was characterized by measuring the cross-link densities and molecular weights between cross-links ($M_c$) obtained by a swelling experiment using Flory-Rhener theory. The thermal and mechanical properties of the segmented block copolyurethane (GAP-b-PCP) binders prepared by the incorporation of PCP into the binder recipes were investigated, along with the effect of the different curatives ratios.
Keywords
glycidyl azide polymer (GAP); polycaprolactone(PCP); network structure; thermal properties; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 A. Provatas, Energetic Polymers and Plasticizers for Explosive Formulation - A Review of Recent Advances, DSTO-TR-0966 Commonwealth of Australia, Australia, 2000
2 R. G. Stacer and D. M. Husband, Propell. Explos. Pyrot., 16, 167 (1991)
3 B. S. Min, J. Kor. Inst. Mil. Sci. Tech., 8, 69 (2005)
4 T. F. Comfort, R. M. Steckman, and K. O. Hartman, CPIA Publication 630, 3, 87 (1995)
5 K. J. Kolonko, M. W. Barners, and L. L. Biegert, US Patent 4,77,432 (1988)
6 P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953
7 L. R. G. Treolar, The Physics of the Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, 1975
8 V. Vasudevan and G. Sundararajan, Propell. Explos. Pyrot., 24, 295 (1999)
9 E. E. Hamurcu and B. M. Baysal, J. Polym. Sci.; Part B: Polym. Phys., 32, 591 (1994)
10 E. S. Sutton, AIAA/SAE/ASME 20th Joint Propulsion Conference, 1236 (1984)
11 J. S. Yoo, M. S. Kim, D. S. Lee, B. S. Kim, and J. H. Kim, Macromol. Res., 14, 117 (2006)   과학기술학회마을   DOI
12 S. W. Hong, K. H. Kim, J. Huh, C. H. Ahn, and W. H. Jo, Macromol. Res., 13, 397 (2005)
13 Y. M. Mohan, M. P. Raju, and K. M. Raju, Int. J. Polym. Mat., 54, 651 (2005)   DOI   ScienceOn
14 H. P. Mama, Space Flight, 38, 409 (1994)
15 K. Subramanian, Eur. Polym. J., 35, 1403 (1999)
16 N. Kubota, T. Sonobe, A. Yamamoto, and H. Shimizu, J. Prop. Power, 6, 686 (1990)
17 M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Prop. Power, 8, 560 (1992)
18 S. Shukla, A. K. Bajpai, and J. Bajpai, Macromol. Res., 11, 273 (2003)
19 S. R. Jain, V. Sekkar, and V. N. Krishnamurthy, J. Appl. Polym. Sci., 48, 1515 (1993)
20 B. S. Min, G. Baek, and S. W. Ko, Submitted
21 G. Gee, Trans. Inst. Rubber. Ind., 18, 266 (1943)
22 Y. M. Mohan and K. M. Raju, Int. J. Polym. Mat., 55, 203 (2006)   DOI   ScienceOn
23 Y. Longevialle, H. Mace, G. Berteleau, and M. Golfier, in Proc. ADPA Intern. Symp. on Energetic Materials Technology, 1995, pp. 125-131
24 V. T. Bui, E. Ahad, D. Rheaume, and M. P. Raymond, J. Appl. Polym. Sci., 62, 27 (1996)
25 I. Konami, K. Kobayashi, and K. Kato, Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, V. Yang, T. B. Brill, and W. Z. Ren, Eds., Progress in Astronautics and Aeronautics, AIAA, 2000, Vol. 185, p. 455
26 D. J. Plazek, G. F. Gu, R. G. Stacer, L. J. Su, E. D. Von Meerwall, and F. N. Kelley, J. Mater. Sci., 23, 1289 (1988)