• Title/Summary/Keyword: Low molecular water-soluble chitosan

Search Result 25, Processing Time 0.041 seconds

Novel Gene Delivery Carrier Using Chitosan-Lipoic Acid Comb-Type Copolymer (키토산-리포산 빗살형 공중합체를 이용한 유전자 전달체 개발)

  • Kwon, Sang-Kyoo;Kim, Sung-Wan;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.501-506
    • /
    • 2010
  • Natural chitosan has high molecular weight and the poor solubility in water. Water-soluble chitosan with low molecular weight was prepared by the hydrolysis method. In order to develop an efficient gene delivery carrier, chitosan was conjugated with lipoic acid to form the comb-type copolymer. The copolymer with the amphiphilic property formed the self-assembled nanoparticles in the aqueous solution. The average size of nanoparticles was 217.6 nm and the average size of nanoparticles/DNA complex was 170 nm. New chitosan-lipoic acid copolymer showed the low cytotoxicity and 10 times higher transfection efficiency than that of the pure chitosan.

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

The application of chitosan to dental medicine

  • Hayashi, Y.;Yamada, S.;Ohara, N.;Kim, S-K.;Ikeda, T.;Yanagiguchi, K.;Matsunaga, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.545-545
    • /
    • 2003
  • Chitosan is applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinus. Furthermore, it is being investigated as an absorbing membrane for endodontic and periodontic surgeries. A few studies have reported osteoconduction and osteogenesia at the site of chitosan implant in vivo. However, compared with soft tissue healing processes, the mechanisms concerning effects of chitosan for biological mineralization have not yet been resoil In the present study, we studied the gene expression pattern using cDNA microarray and RT-PCR analyses in hard tissue forming osteoblasts cultured with water-soluble and low molecular weight chitooligosaccharide. cDNA microarray analysis revealed that 16 genes were expressed at 〉1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.

  • PDF

The Effects of Chitosan Pretreatment on the Dyeabilities and Antibacterial Activities of Persimmon Juice-Dyed Cotton Fabrics (키토산 전처리가 감즙염색 면직물의 염색성과 항균성에 미치는 효과)

  • Han, Young-Sook;Lee, Hye-Ja;Kim, Jung-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.43 no.2
    • /
    • pp.115-126
    • /
    • 2005
  • Environmentally and human compatible chitosan were pretreated on cotton fabrics which were then dyed with 100% persimmon juice. The chitosan concentration was 1% and the chitosan types were high molecular weight chitosan (1980cps), low molecular weight chitosan (18첸), chitosan oligomer and water soluble chitosan. The properties of the fabric surfaces, the dyeabilities, the color fastnesses, the antibacterial activities, the strengths, the elongations and the drape stiffnesses were evaluated. The properties of the chitosanpretreated, persimmon juice-dyed cotton fabrics (CLP) were compared to those of the untreated (CN), chitosan treated (CL) and persimmon juice-dyed fabrics (CP). The results were as follows. The fibers extruded from the surface of CN decreased on CP. The air between the fibers within CN were substituted by chitosan solution or persimmon juiceand decreased within CLP according to SEM observations. The effects of chitosan treatment, the chitosan molecular weights and the degrees of deacetylation of chitosan on the dyeabilities of the persimmon juice-dyed cotton fabric were not distinct. The curing after chitosan padding improved the dyeabilities of CLP compare to noncuring. The strengths of CP decreased and those of CL increased, compared to those of CN. The strengths of CLP were greater than those of CP. The elogations of CP and CL were greater than those of CN. The strengths and elongations of CLP were greater than those of CN. The chitosan treatments improved the strengths but not the elongations. The drape stiffnesses of CL, CP and CLP were greater than those of CN. The antibacterial activites of chitosan pretreated, persimmon juice-dyed cotton fabrics against Staphylococcus aureus were increased by more than 98% by persimmon juice.

Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan

  • Park, Yoon-Kyung;Kim, Mi-Hyun;Park, Seong-Cheol;Cheong, Hyeon-Sook;Jang, Mi-Kyeong;Nah, Jae-Woon;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1729-1734
    • /
    • 2008
  • Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.

Rheological Properties of the Mixture and Heat-induced Gel Prepared from Pork Salt Soluble Protein in Combined with Water Soluble Chitooligosaccharide and Chitosan (돈육에서 추출한 염용성 단백질에 수용성 키토올리고당 및 키토산을 첨가한 혼합액과 가열 겔의 물성특성)

  • Park, Sung-Yong;Wang, Seung-Hyun;Chin, Koo-Bok;Kim, Young-Dae
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.594-597
    • /
    • 2004
  • Effects of various levels and molecular weights (MWs) of chitooligosaccharides and chitosan with pork salt-soluble protein (SSP) on pH, moisture (%), viscosity, and hardness of protein-chitosan mixtures were determined in a model study. Mixtures of 0.15, 0.3, and 0.45% chitosan at various MWs (Low, 1.5 kDa; Medium, 30-50 kDa; High, 200 kDa) were dissolved in 3% SSP solution for measurement of pH and viscosity at $20^{\circ}C$. pH value increased with addition of 0.45% low MW of chitooligosacchearides into SSP (p<0.05), whereas decreased with addition of 0.45% medium MW and 0.3% or higher level of high MW chitosan. Viscosity increased with addition of more than 0.3% either medium or high MW chitosan (p<0.05), as compared to mixture with low MW chitolligosaccharide and control (p<0.05). No differences in gel pH, moisture, and hardness values were observed among treatments (p>0.05). Further study will be performed to evaluate rheological properties actual meat products with various levels and MWs of chitosan.

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

Preparation and Characterization of the Histidine-graft-Low Molecular Weight Water-Soluble Chitosan as a Gene Carrier (유전자 전달체로서 히스티딘이 결합된 저분자량 수용성 키토산의 제조와 특성)

  • Park, Jun-Kyu;Kim, Dong-gon;Choi, Changyong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.607-611
    • /
    • 2007
  • To improve transfection efficiency, we prepared histidine-low molecular weight water-soluble chitosan (LMWSC) having the potential to form complex with DNA as a cationic polymer. Histidine-LMWSC was synthesized by the esterification reaction and removing phthaloyl group. The histidine-LMWSC was characterized using FT-IR, $^1H$ NMR spectra. Histidine-LMWSC was complexed with plasmid DNA (pDNA) in various polymer/DNA (N/P) weight ratios, and the complex was identified using gel retardation assay. The particle sizes of the hisitidine-LMWSC/DNA complexes were measured on a DLS instrument by fixing the histidine-LMWSC/DNA weight ratio of 10/1. Owing to the utilization of a large excess amount of cationic LMWSC against anionic DNA, the particle size of histidine-LMWSC/DNA complexes was in the range of 100~200 nm. Therefore, histidine-LMWSC will be useful in the development of gene carriers.