Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Yang-Bae (Institute of Photonics & Surface Treatment, Q-SYS Co. Ltd.)
  • Published : 2009.04.25

Abstract

Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

Keywords

References

  1. R. Pelton, Adv. Collold Interf. Sci., 85, 1 (2000) https://doi.org/10.1016/S0001-8686(99)00023-8
  2. H. M. Crowther and B. Vincent, Colloid Polym. Sci., 276, 46 (1998) https://doi.org/10.1007/s003960050207
  3. S. Hirotsu, J. Chem. Phys., 88, 427 (1988) https://doi.org/10.1063/1.454619
  4. C. Ramkissom-Ganorkar, L. Feng, M. Baudys, and S. W. Kim, J. Control. Release, 59, 287 (1999) https://doi.org/10.1016/S0168-3659(99)00006-1
  5. T. G. Park, Biomaterials, 20, 517 (1999) https://doi.org/10.1016/S0142-9612(98)00197-5
  6. K. Kono, A. Henmi, H. Yamashita, H. Hayashi, and T. Takagishi, J. Control. Release, 59, 63 (1999) https://doi.org/10.1016/S0168-3659(98)00180-1
  7. Y. Katayama, T. Sonoda, and M. Maeda, Macromolecules, 34, 8569 (2001) https://doi.org/10.1021/ma010966a
  8. K. Y. Lee, Macromol. Res., 15, 195 (2007) https://doi.org/10.1007/BF03218774
  9. J. S. Park and Y. W. Cho, Macromol Res., 15, 513 (2007) https://doi.org/10.1007/BF03218824
  10. C. Choi, M. K. Jang, and J. W. Nah, Macromol. Res., 15, 623 (2007) https://doi.org/10.1007/BF03218942
  11. M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim, Pharm. Res., 18, 427 (2001) https://doi.org/10.1023/A:1011037807261
  12. C. F. Lee, C. J. Wen, and W. Y. Chiu, J. Polym. Sci. Part A: Polym. Chem., 41, 2053 (2003) https://doi.org/10.1002/pola.10733
  13. C. F. Lee, C. J. Wen, C. L. Lin, and W. Y. Chiu, J. Polym. Sci. Part A: Polym. Chem., 42, 3029 (2004) https://doi.org/10.1002/pola.20085
  14. S. Y. Kim, S. M. Cho, Y. M. Lee, and S. J. Kim, J. Appl. Polym. Sci., 78, 1381 (2000) https://doi.org/10.1002/1097-4628(20001114)78:7<1381::AID-APP90>3.0.CO;2-M
  15. J. W. Nah and M. K. Jang, J. Polym. Sci. Part A: Polym. Chem., 40, 3796 (2002) https://doi.org/10.1002/pola.10463
  16. S. Y. Chae, S. Son, M. Lee, M. K. Jang, and J. W. Nah, J. Control. Release, 102, 330 (2005)
  17. S. Y. Chae, M. K. Jang, and J.W. Nah, J. Control. Release, 102, 383 (2005) https://doi.org/10.1016/j.jconrel.2004.10.012
  18. C. G. Sinn, R. Dimora, C. Huin, O. Sel, and M. Antonietti, Macromolecules, 39, 6310 (2006) https://doi.org/10.1021/ma061095d
  19. A. Poloza and F. M. Winnik, Langmuir, 15, 4222 (1999) https://doi.org/10.1021/la9804839
  20. S. Koga, S, Sasaki, and H. Maeda, J. Phys. Chem. B, 105, 4105 (2001) https://doi.org/10.1021/jp0024625