Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan

  • Park, Yoon-Kyung (Research Center for Proteineous Materials (RCPM), Chosun University) ;
  • Kim, Mi-Hyun (Research Center for Proteineous Materials (RCPM), Chosun University) ;
  • Park, Seong-Cheol (Research Center for Proteineous Materials (RCPM), Chosun University) ;
  • Cheong, Hyeon-Sook (Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Hahm, Kyung-Soo (Research Center for Proteineous Materials (RCPM), Chosun University)
  • Published : 2008.10.31

Abstract

Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.

Keywords

References

  1. Alonso, M. J. and A. Sanchez. 2003. The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55: 1451-1463 https://doi.org/10.1211/0022357022476
  2. Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  3. Chae, S. Y., M. K. Jang, and J. W. Nah. 2005. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control Release 102: 383-394 https://doi.org/10.1016/j.jconrel.2004.10.012
  4. Illum, L. 1998. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15: 1326-1331 https://doi.org/10.1023/A:1011929016601
  5. Jeon, Y. J. and S. K. Kim. 2001. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J. Chitin Chitosan 6: 163-167
  6. Kisko, G., R. Sharp, and S. Roller. 2005. Chitosan inactivates spoilage yeasts but enhances survival of Escherichia coli O157:H7 in apple juice. J. Appl. Microbiol. 98: 872-880 https://doi.org/10.1111/j.1365-2672.2004.02527.x
  7. Kulikov, S. N., F. K. Alimova, N. G. Zakharova, S. V. Nemtsev, and V. P. Varlamov. 2006. Biological preparations with different mechanism of action for protecting potato against fungal diseases. Prikl. Biokhim. Mikrobiol. 42: 86-92
  8. Lee, D. G., H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K.-S. Hahm. 2002. Design of novel analogue peptides with potent antibiotic activity without hemolytic activity based on the antimicrobial peptide derived from N-terminal sequence of Helicobacter pylori ribosomal protein L1. Biochim. Biophys. Acta 1598: 185-194 https://doi.org/10.1016/S0167-4838(02)00373-4
  9. Lee, D. G., Y.-S. Chang, Y. Park, K.-S. Hahm, and E.-R. Woo. 2002. Antimicrobial effects of ocotillone isolated from the stem bark of Ailanthus altisshima. J. Microbiol. Biotech. 12: 854-857
  10. Matsuzaki, K., K. Sugishita, and K. Miyajima. 1999. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of Gram-negative bacteria. FEBS Lett. 449: 221-224 https://doi.org/10.1016/S0014-5793(99)00443-3
  11. Nah, J. W. and M. K. Jang. 2002. Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method. J. Polym. Sci. A Polym. Chem. 40: 3796-3803 https://doi.org/10.1002/pola.10463
  12. Nicolas, P. and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 4: 277-304
  13. Op den Kamp, J. A. 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48: 47-71 https://doi.org/10.1146/annurev.bi.48.070179.000403
  14. Park, P. J., J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-323
  15. Park, P. J., J. Y. Je, and S. K. Kim. 2004. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym. 55: 17-22 https://doi.org/10.1016/j.carbpol.2003.05.002
  16. Park, Y., D. G. Lee, P. I. Kim, E.-R. Woo, G.-W. Cheong, C.-H. Choi, and K.-S. Hahm. 2003. A Leu-Lys-rich antimicrobial peptide: Activity and mechanism. Biochim. Biophys. Acta 1645: 172-182 https://doi.org/10.1016/S1570-9639(02)00541-1
  17. Porporatto, C., I. D. Bianco, C. M. Riera, and S. G. Correa. 2003. Chitosan induces different L-arginine metabolic pathways in resting and inflammatory macrophages. Biochem. Biophys. Res. Commun. 304: 266-272 https://doi.org/10.1016/S0006-291X(03)00579-5
  18. Puttipipatkhachorn, S., J. Nunthanid, K. Yamamoto, and G. E. Peck. 2001. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Control Release 75: 143-153 https://doi.org/10.1016/S0168-3659(01)00389-3
  19. Rabea, E. I., M. E. Badawy, T. M. Rogge, C. V. Stevens, M. Hofte, W. Steurbaut, and G. Smagghe. 2005. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest. Manag. Sci. 61: 951-960 https://doi.org/10.1002/ps.1085
  20. Schipper, N. G. M., K. M. Varum, P. Stenberg, G. O. Cklind, H. Lennernas, and P. Artursson. 1999. Chitosans as absorption enhancers of poorly absorbable drugs: 3. Influence of mucus on absorption enhancement. Eur. J. Pharm. Sci. 8: 335-343 https://doi.org/10.1016/S0928-0987(99)00032-9
  21. Suzuki, K., T. Mikami, Y. Okawa, T. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Polym. 151: 403-408
  22. Szoka, F. and D. Papahadjopoulos. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75: 4194-4198
  23. Vishu, K. A. B., M. C. Varadaraj, L. R. Gowda, and R. N. Tharanathan. 2007. Low molecular weight chitosans-preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta 1770: 495-505 https://doi.org/10.1016/j.bbagen.2006.12.003
  24. Xu, G. F., B. A. Song, P. S. Bhadury, S. Yang, P. Q. Zhang, L. H. Jin, W. Xue, D. Y. Hu, and P. Lu. 2007. Synthesis and antifungal activity of novel s-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg. Med. Chem. 5: 3768-3774