Browse > Article

Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan  

Park, Yoon-Kyung (Research Center for Proteineous Materials (RCPM), Chosun University)
Kim, Mi-Hyun (Research Center for Proteineous Materials (RCPM), Chosun University)
Park, Seong-Cheol (Research Center for Proteineous Materials (RCPM), Chosun University)
Cheong, Hyeon-Sook (Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University)
Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University)
Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Hahm, Kyung-Soo (Research Center for Proteineous Materials (RCPM), Chosun University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.10, 2008 , pp. 1729-1734 More about this Journal
Abstract
Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.
Keywords
LMWS-chitosan; antifungal activity; confocal microscopy; electron microscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
1 Kisko, G., R. Sharp, and S. Roller. 2005. Chitosan inactivates spoilage yeasts but enhances survival of Escherichia coli O157:H7 in apple juice. J. Appl. Microbiol. 98: 872-880   DOI   ScienceOn
2 Lee, D. G., H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K.-S. Hahm. 2002. Design of novel analogue peptides with potent antibiotic activity without hemolytic activity based on the antimicrobial peptide derived from N-terminal sequence of Helicobacter pylori ribosomal protein L1. Biochim. Biophys. Acta 1598: 185-194   DOI
3 Matsuzaki, K., K. Sugishita, and K. Miyajima. 1999. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of Gram-negative bacteria. FEBS Lett. 449: 221-224   DOI
4 Park, P. J., J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-323
5 Puttipipatkhachorn, S., J. Nunthanid, K. Yamamoto, and G. E. Peck. 2001. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Control Release 75: 143-153   DOI   ScienceOn
6 Rabea, E. I., M. E. Badawy, T. M. Rogge, C. V. Stevens, M. Hofte, W. Steurbaut, and G. Smagghe. 2005. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest. Manag. Sci. 61: 951-960   DOI   ScienceOn
7 Szoka, F. and D. Papahadjopoulos. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75: 4194-4198
8 Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61-92   DOI   ScienceOn
9 Schipper, N. G. M., K. M. Varum, P. Stenberg, G. O. Cklind, H. Lennernas, and P. Artursson. 1999. Chitosans as absorption enhancers of poorly absorbable drugs: 3. Influence of mucus on absorption enhancement. Eur. J. Pharm. Sci. 8: 335-343   DOI   ScienceOn
10 Lee, D. G., Y.-S. Chang, Y. Park, K.-S. Hahm, and E.-R. Woo. 2002. Antimicrobial effects of ocotillone isolated from the stem bark of Ailanthus altisshima. J. Microbiol. Biotech. 12: 854-857
11 Xu, G. F., B. A. Song, P. S. Bhadury, S. Yang, P. Q. Zhang, L. H. Jin, W. Xue, D. Y. Hu, and P. Lu. 2007. Synthesis and antifungal activity of novel s-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg. Med. Chem. 5: 3768-3774
12 Vishu, K. A. B., M. C. Varadaraj, L. R. Gowda, and R. N. Tharanathan. 2007. Low molecular weight chitosans-preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim. Biophys. Acta 1770: 495-505   DOI   ScienceOn
13 Kulikov, S. N., F. K. Alimova, N. G. Zakharova, S. V. Nemtsev, and V. P. Varlamov. 2006. Biological preparations with different mechanism of action for protecting potato against fungal diseases. Prikl. Biokhim. Mikrobiol. 42: 86-92
14 Suzuki, K., T. Mikami, Y. Okawa, T. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Polym. 151: 403-408
15 Nah, J. W. and M. K. Jang. 2002. Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method. J. Polym. Sci. A Polym. Chem. 40: 3796-3803   DOI   ScienceOn
16 Op den Kamp, J. A. 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48: 47-71   DOI   ScienceOn
17 Chae, S. Y., M. K. Jang, and J. W. Nah. 2005. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control Release 102: 383-394   DOI   ScienceOn
18 Nicolas, P. and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 4: 277-304
19 Park, P. J., J. Y. Je, and S. K. Kim. 2004. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym. 55: 17-22   DOI   ScienceOn
20 Alonso, M. J. and A. Sanchez. 2003. The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55: 1451-1463   DOI   ScienceOn
21 Park, Y., D. G. Lee, P. I. Kim, E.-R. Woo, G.-W. Cheong, C.-H. Choi, and K.-S. Hahm. 2003. A Leu-Lys-rich antimicrobial peptide: Activity and mechanism. Biochim. Biophys. Acta 1645: 172-182   DOI   ScienceOn
22 Porporatto, C., I. D. Bianco, C. M. Riera, and S. G. Correa. 2003. Chitosan induces different L-arginine metabolic pathways in resting and inflammatory macrophages. Biochem. Biophys. Res. Commun. 304: 266-272   DOI   ScienceOn
23 Jeon, Y. J. and S. K. Kim. 2001. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J. Chitin Chitosan 6: 163-167
24 Illum, L. 1998. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15: 1326-1331   DOI   ScienceOn