• Title/Summary/Keyword: Low Power Consumption

Search Result 2,358, Processing Time 0.029 seconds

Design of Ultra Low-Voltage NCL Circuits in Nanoscale MOSFET Technology (나노 MOSFET 공정에서의 초저전압 NCL 회로 설계)

  • Hong, Woo-Hun;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Ultra low-power design and energy harvesting applications require digital systems to operate under extremely low voltages approaching the point of balance between dynamic and static power consumption which is attained in the sub-threshold operation mode. Delay variations are extremely large in this mode. Therefore, in this paper, a new low-power logic design methodology using asynchronous NCL circuits is proposed to reduce power consumption and not to be affected by various technology variations in nanoscale MOSFET technology. The proposed NCL is evaluated using various benchmark circuits at 0.4V supply voltage, which are designed using 45nm MOSFET predictive technology model. The simulation results are compared to those of conventional synchrouns logic circuits in terms of power consumption and speed.

Low Power SoC Modem Design for High-Speed Wireless Communications (초고속 무선 통신을 위한 저전력 모뎀 SoC 설계)

  • Kim, Yong-Sung;Lim, Yong-Seok;Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2010
  • In this paper, we design a modem SoC (System on Chip) for low power consumption and high speed wireless communications. Among various schemes of high speed communications, an MB-OFDM (Multi Band-Orthogonal Frequency Division Multiplexing) UWB (Ultra-Wide-Band) chip is designed. The MB-OFDM uses wide-band frequency to provide high speed data rate. Additionally, the system imposes no interference to other services. The 90nm CMOS (Complementary Metal-Oxide Semiconductor) technology is used for the SoC design. Especially, power management mode is implemented to reduce the power consumption.

A Low Power 16-Bit RISC Microprocessor Using ECRL Circuits

  • Shin, Young-Joon;Lee, Chan-Ho;Moon, Yong
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • This paper presents a low power 16-bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a $0.35{\mu}m$ CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four-phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non-adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.

  • PDF

Analysis on the Effectiveness of the Filter Buffer for Low Power NAND Flash Memory (저전력 NAND 플래시 메모리를 위한 필터 버퍼의 효율성 분석)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 2012
  • Currently, NAND Flash memory has been widely used in consumer storage devices due to its non-volatility, stability, economical feasibility, low power usage, durability, and high density. However, a high capacity of NAND flash memory causes the high power consumption and the low performance. In the convention memory research, a hierarchical filter mechanism can archive an effective performance improvement in terms of the power consumption. In order to attain the best filter structure for NAND flash memory, we selected a direct-mapped filter, a victim filter, a fully associative filter and a 4-way set associative filter for comparison in the performance analysis. According to the results of the simulation, the fully associative filter buffer with a 128byte fetching size can obtain the bet performance compared to another filter structures, and it can reduce the energy*delay product(EDP) by about 93% compared to the conventional NAND Flash memory.

A Low Power Charge Recycling ROM Architecture (저 전력 전하 재활용 롬 구조)

  • Yang, Byeong-Do;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.821-827
    • /
    • 2001
  • A new low power charge-recycling ROM architecture is proposed. The charge-recycling ROM uses charge-recycling method in bit lines of ROM to save the power consumption. About 90% of the total power used in the ROM is consumed in bit lines. With the proposed method, power consumption in ROM bit lines can be reduced asymptotically to zero if the number of bit lines is infinite and the sense amplifiers detect infinitely small voltage difference. However, the real sense amplifiers cannot sense very small voltage difference. Therefore, reduction of power consumption is limited. The simulation results show that the charge-recycling ROM only consumes 13% ~ 78% of the conventional low power contact programming mask ROM.

  • PDF

Low Power SAR ADC with Series Capacitor DAC (직렬 커패시터 D/A 변환기를 갖는 저전력 축차 비교형 A/D 변환기)

  • Lee, Jeong-Hyeon;Jin, Yu-Rin;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.90-97
    • /
    • 2019
  • The charge redistribution digital-to-analog converter(CR-DAC) is often used for successive approximation register analog-to-digital converter(SAR ADC) that requiring low power consumption and small circuit area. However, CR-DAC is required 2 to the power of N unit capacitors to generate reference voltage for successive approximation of the N-bit SAR ADC, and many unit capacitors occupy large circuit area and consume more power. In order to improve this problem, this paper proposes SAR ADC using series capacitor DAC. The series capacitor DAC is required 2(1+N) unit capacitors to generate reference voltage for successive approximation and charges only two capacitors of the reference generation block. Because of these structural characteristics, the SAR ADC using series capacitor DAC can reduce the power consumption and circuit area. Proposed SAR ADC was designed in CMOS 180nm process, and at 1.8V supply voltage and 500kS/s sampling rate, proposed 6-bit SAR ADC have signal-to-noise and distortion ratio(SNDR) of 36.49dB, effective number of bits(ENOB) of 5.77-bit, power consumption of 294uW.

1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks

  • Lee, Sung-Sik;Lee, Ah-Ra;Je, Chang-Han;Lee, Myung-Lae;Hwang, Gunn;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.644-652
    • /
    • 2008
  • In this paper, a low-power CMOS interface circuit is designed and demonstrated for capacitive sensor applications, which is implemented using a standard 0.35-${\mu}m$ CMOS logic technology. To achieve low-power performance, the low-voltage capacitance-to-pulse-width converter based on a self-reset operation at a supply voltage of 1.5 V is designed and incorporated into a new interface circuit. Moreover, the external pulse signal for the reset operation is made unnecessary by the employment of the self-reset operation. At a low supply voltage of 1.5 V, the new circuit requires a total power consumption of 0.47 mW with ultra-low power dissipation of 157 ${\mu}W$ of the interface-circuit core. These results demonstrate that the new interface circuit with self-reset operation successfully reduces power consumption. In addition, a prototype wireless sensor-module with the proposed circuit is successfully implemented for practical applications. Consequently, the new CMOS interface circuit can be used for the sensor applications in ubiquitous sensor networks, where low-power performance is essential.

  • PDF

Design and Implementation of Low Power Container Security Device based on IEEE 802.15.4 (IEEE 802.15.4 기반 저전력 컨테이너 보안장치의 설계 및 구현)

  • Park, Se-Young;Kim, Taek-Hyun;Choi, Hoon;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.215-224
    • /
    • 2010
  • A container security device (CSD) monitors intrusions through the cargo door; it is a reduced function device that uses IEEE 802.15.4 with a beacon mode. However, in the beacon mode, the CSD consumes too much battery power in periodical idle listening and sensing trials. Moreover, the CSD cannot send the message to the CSD reader actively, and it makes big latency problem. Therefore, we propose a low-power CSD to reduce the unnecessary power consumption. The proposed CSD follows the requirements of the U.S. Department of Homeland Security, and reduces battery consumption through a power-efficient hardware design, a night-watch mechanism for low-power operation and low-power sensing to reduce unnecessary monitoring. And the CSD sends alert message to the CSD reader. Simulation results show that our CSD reduces battery consumption by over 70% through the night-watch mechanism and by approximately 80% through the low-power sensing. And the CSD can send the alert message to the remote CSD reader by over 94%.

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

An Effective Viewport Resolution Scaling Technique to Reduce the Power Consumption in Mobile GPUs

  • Hwang, Imjae;Kwon, Hyuck-Joo;Chang, Ji-Hye;Lim, Yeongkyu;Kim, Cheong Ghil;Park, Woo-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3918-3934
    • /
    • 2017
  • This paper presents a viewport resolution scaling technique to reduce power consumption in mobile graphic processing units (GPUs). This technique controls the rendering resolution of applications in proportion to the resolution factor. In the mobile environment, it is essential to find an effective resolution factor to achieve low power consumption because both the resolution and power consumption of a GPU are in mutual trade-off. This paper presents a resolution factor that can minimize image quality degradation and gain power reduction. For this purpose, software and hardware viewport resolution scaling techniques are applied in the Android environment. Then, the correlation between image quality and power consumption is analyzed according to the resolution factor by conducting a benchmark analysis in the real commercial environment. Experimental results show that the power consumption decreased by 36.96% on average by the hardware viewport resolution scaling technique.