• Title/Summary/Keyword: Long-Term Memory Process

Search Result 88, Processing Time 0.021 seconds

Level Shifts and Long-term Memory in Stock Distribution Markets (주식유통시장의 층위이동과 장기기억과정)

  • Chung, Jin-Taek
    • Journal of Distribution Science
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose - The purpose of paper is studying the static and dynamic side for long-term memory storage properties, and increase the explanatory power regarding the long-term memory process by looking at the long-term storage attributes, Korea Composite Stock Price Index. The reason for the use of GPH statistic is to derive the modified statistic Korea's stock market, and to research a process of long-term memory. Research design, data, and methodology - Level shifts were subjected to be an empirical analysis by applying the GPH method. It has been modified by taking into account the daily log return of the Korea Composite Stock Price Index a. The Data, used for the stock market to analyze whether deciding the action by the long-term memory process, yield daily stock price index of the Korea Composite Stock Price Index and the rate of return a log. The studies were proceeded with long-term memory and long-term semiparametric method in deriving the long-term memory estimators. Chapter 2 examines the leading research, and Chapter 3 describes the long-term memory processes and estimation methods. GPH statistics induced modifications of statistics and discussed Whittle statistic. Chapter 4 used Korea Composite Stock Price Index to estimate the long-term memory process parameters. Chapter 6 presents the conclusions and implications. Results - If the price of the time series is generated by the abnormal process, it may be located in long-term memory by a time series. However, test results by price fixed GPH method is not followed by long-term memory process or fractional differential process. In the case of the time-series level shift, the present test method for a long-term memory processes has a considerable amount of bias, and there exists a structural change in the stock distribution market. This structural change has implications in level shift. Stratum level shift assays are not considered as shifted strata. They exist distinctly in the stock secondary market as bias, and are presented in the test statistic of non-long-term memory process. It also generates an error as a long-term memory that could lead to false results. Conclusions - Changes in long-term memory characteristics associated with level shift present the following two suggestions. One, if any impact outside is flowed for a long period of time, we can know that the long-term memory processes have characteristic of the average return gradually. When the investor makes an investment, the same reasoning applies to him in the light of the characteristics of the long-term memory. It is suggested that when investors make decisions on investment, it is necessary to consider the characters of the long-term storage in reference with causing investors to increase the uncertainty and potential. The other one is the thing which must be considered variously according to time-series. The research for price-earnings ratio and investment risk should be composed of the long-term memory characters, and it would have more predictability.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Neuropsychology of Memory (기억의 신경심리학)

  • Rhee, Min-Kyu
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This paper reviewed models to explain memory and neuropsychological tests to assess memory. Memory was explained in cognitive and neuroanatomical perspectives, Cognitive model describes memory as structure and process. In structure model, memory is divided into three systems: sensory memory, short-term memory(working memory), and long-term memory. In process model, there are broadly three categories of memory process: encoding, storage, and retrieval. Memory process work in memory structure. There are two prominent models of the neuroanatomy of memory, derived from the work of Mishkin and Appenzeller and that of Squire and Zola-Morgan. These two models are the most useful for the clinician in part because they take into account the connections between the limbic and frontal cortical regions. The major difference between the two models concerns the role of the amygdala in memory processess. Mishkin and his colleagues believe that the amygdala plays a significant role while Squire and his colleagues do not. The most popular and widely used tests of memory ability such as WMS-R, AVLT, CVLT, HVLT. RBMT, CFT, and BVRT-R, were reviewed.

  • PDF

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.

Long Memory Characteristics in the Korean Stock Market Volatility

  • Cho, Sinsup;Choe, Hyuk;Park, Joon Y
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.577-594
    • /
    • 2002
  • For the estimation and test of long memory feature in volatilities of stock indices and individual companies semiparametric approach, Geweke and Porter-Hudak (1983), is employed. Empirical study supports the strong evidence of volatility persistence in Korean stock market. Most of indices and individual companies have the feature of long term dependence of volatility. Hence the short memory models are unable to explain the volatilities in Korean stock market.

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Emotional Memory Mechanism Depending on Emotional Experience (감정적 경험에 의존하는 정서 기억 메커니즘)

  • Yeo, Ji Hye;Ham, Jun Seok;Ko, Il Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.169-177
    • /
    • 2009
  • In come cases, people differently respond on the same joke or thoughtless behavior - sometimes like it and laugh, another time feel annoyed or angry. This fact is explained that experiences which we had in the past are remembered by emotional memory, so they cause different responses. When people face similar situation or feel similar emotion, they evoke the emotion experienced in the past and the emotional memory affects current emotion. This paper suggested the mechanism of the emotional memory using SOM through the similarity between the emotional memory and SOM learning algorithm. It was assumed that the mechanism of the emotional memory has also the characteristics of association memory, long-term memory and short-term memory in its process of remembering emotional experience, which are known as the characteristics of the process of remembering factual experience. And then these characteristics were applied. The mechanism of the emotional memory designed like this was applied to toy hammer game and I measured the change in the power of toy hammer caused by differently responding on the same stimulus. The mechanism of the emotional memory suggest in above is expected to apply to the fields of game, robot engineering, because the mechanism can express various emotions on the same stimulus.

Speaker verification system combining attention-long short term memory based speaker embedding and I-vector in far-field and noisy environments (Attention-long short term memory 기반의 화자 임베딩과 I-vector를 결합한 원거리 및 잡음 환경에서의 화자 검증 알고리즘)

  • Bae, Ara;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.137-142
    • /
    • 2020
  • Many studies based on I-vector have been conducted in a variety of environments, from text-dependent short-utterance to text-independent long-utterance. In this paper, we propose a speaker verification system employing a combination of I-vector with Probabilistic Linear Discriminant Analysis (PLDA) and speaker embedding of Long Short Term Memory (LSTM) with attention mechanism in far-field and noisy environments. The LSTM model's Equal Error Rate (EER) is 15.52 % and the Attention-LSTM model is 8.46 %, improving by 7.06 %. We show that the proposed method solves the problem of the existing extraction process which defines embedding as a heuristic. The EER of the I-vector/PLDA without combining is 6.18 % that shows the best performance. And combined with attention-LSTM based embedding is 2.57 % that is 3.61 % less than the baseline system, and which improves performance by 58.41 %.

Long-term Synaptic Plasticity: Circuit Perturbation and Stabilization

  • Park, Joo Min;Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.457-460
    • /
    • 2014
  • At central synapses, activity-dependent synaptic plasticity has a crucial role in information processing, storage, learning, and memory under both physiological and pathological conditions. One widely accepted model of learning mechanism and information processing in the brain is Hebbian Plasticity: long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD are respectively activity-dependent enhancement and reduction in the efficacy of the synapses, which are rapid and synapse-specific processes. A number of recent studies have a strong focal point on the critical importance of another distinct form of synaptic plasticity, non-Hebbian plasticity. Non-Hebbian plasticity dynamically adjusts synaptic strength to maintain stability. This process may be very slow and occur cell-widely. By putting them all together, this mini review defines an important conceptual difference between Hebbian and non-Hebbian plasticity.

A Low Power Multi Level Oscillator Fabricated in $0.35{\mu}m$ Standard CMOS Process ($0.35{\mu}m$ 표준 CMOS 공정에서 제작된 저전력 다중 발진기)

  • Chai Yong-Yoong;Yoon Kwang-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.399-403
    • /
    • 2006
  • An accurate constant output voltage provided by the analog memory cell may be used by the low power oscillator to generate an accurate low frequency output signal. This accurate low frequency output signal may be used to maintain long-term timing accuracy in host devices during sleep modes of operation when an external crystal is not available to provide a clock signal. Further, incorporation of the analog memory cell in the low power oscillator is fully implementable in a 0.35um Samsung standard CMOS process. Therefore, the analog memory cell incorporated into the low power oscillator avoids the previous problems in a oscillator by providing a temperature-stable, low power consumption, size-efficient method for generating an accurate reference clock signal that can be used to support long sleep mode operation.