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1  |   INTRODUCTION

The process of shortening a large text while keeping the 
original meaning intact is known as text summarization. A 
well-organized and concise summary helps humans to obtain 
the overall scenario of a long text quickly with little labor. 
There are two forms of text summarization: extractive and 
abstractive [1]. Extractive summarization generates a sum-
mary by taking a subset of sentences or phrases from the 
original text. It does not generate new sentences, nor does 
it paraphrase any existing sentences [2,3]. Extractive text 
summarization has become obsolete with the enhancement 
of technology. By contrast, abstractive text summarization is 

a process of summary generation that paraphrases the given 
text and preserves the salient meaning of the source text in 
the summary text [4]. Researchers have recently been drawn 
to this alternative approach of extractive text summarization. 
Despite notable success in automated text summarization, 
conventional methods are unable to resolve all the difficulties 
associated with text summarization. The quality of a gener-
ated summary is measured on the basis of semantic similarity 
and syntactic structure. The conventional methods, however, 
focus on one factor only: either semantic similarity or syntac-
tic structure [5]. Extractive text summarization is well-suited 
for ensuring the syntactic structure during summary genera-
tion, but the generated summary is not semantically coherent. 
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By contrast, abstractive text summarization fails to ensure the 
syntactic structure of the generated summary, but it is effec-
tive in maintaining the semantic coherence [6].

The reason behind the semantic coherence of abstractive 
text summarization is accomplished by learning the rela-
tions between words and choosing the right words to keep 
the summary semantically relevant. The working proce-
dure of abstractive text summarization is very similar to se-
quence-to-sequence modeling as both of them take a sequence 
of text as an input, and a text sequence is generated as a final 
summary [7]. Here, the modeling of sequence-to-sequence 
follows the recurrent neural network (RNN) concept, in 
which a text sequence is provided as an input and looks after 
each element of that given sequence to determine the next 
element of output. The long short-term memory (LSTM) is 
a well-known framework of sequence-to-sequence modeling 
[8]. It solves many natural-language-based problems such as 
machine translation and speech recognition. The task of sum-
mary generation from a text is not as easy as machine trans-
lation because of the variable length of the source text and its 
summary text [9]. Hence, the mapping between a source text 
and its summary text is challenging during summary genera-
tion. Most of the existing LSTM-based abstractive text sum-
marization models use the traditional architecture of LSTM. 
One variation of LSTM is known as the peephole convolu-
tional LSTM (PCLSTM), which heavily depends on previous 
memory-cell content to determine the content of the memory 
of the current cell [10]. The more the abstractive summary 
generation procedures are dependent on the previous mem-
ory cell content, the more effective the solution that is found 
from these procedures. This study, introduces a multilayered 
attentive peephole convolutional LSTM-based (MAPCoL) 
model for abstractive text summarization.

In this study, we develop an abstractive text summariza-
tion model MAPCoL based on the PCLSTM with an attention 
strategy to generate a summary from a long text. The model 
is developed by incorporating the multilayer of PCLSTM. 
The multilayer of PCLSTM is used to capture the complete 
interaction between the input and output of the model. This 
multilayer architecture of our model helps to generate a syn-
tactically well-formed summary. The proposed model is im-
plemented by using Keras with a Tensonflow backend, which 
is a library of Python. The model is applied over a popular 
dataset to test its versatility. We also compare the perfor-
mance of the MAPCoL model with state-of-the-art models 
of abstractive text summarization by tuning internal settings.

This paper is divided into five sections. The first sec-
tion provides a brief overview of related works. The second 
section examines the limitations and benefits of traditional 
LSTM and PCLSTM in summary generation. A new meth-
odology and its evaluation criteria are described in the third 
section. The next chapter describes the obtained results and 
the reasons behind those results. Our conclusions and future 

scope of this work are discussed in the last section of this 
paper.

2  |   RELATED WORK

Summary generation, especially abstractive summary gener-
ation, has become popular with the advancement of machine 
learning. Although a large amount of research has been con-
ducted to develop an efficient and effective model for extrac-
tive text summarization, the number of studies that examined 
abstractive summarization is very small. Some works that 
focused on both summarization approaches are illustrated 
below.

Several neural-network-based methods have been de-
veloped for extractive text summarization. A data-driven 
approach using a feedforward neural network for text sum-
marization is shown in Ref. [11]. Narayan showed a rein-
forcement learning-based algorithm for sentence ranking 
that optimizes the ROUGE (Recall-Oriented Understudy for 
Gisting Evaluation) score for extractive summarization [12]. 
A neural model LeadR was developed to produce a proba-
bility distribution over positions of sentences. This helps to 
locate sentences for summary generation [13]. An end-to-
end neural network framework is presented for extractive 
summarization that selects sentences efficiently based on a 
calculated score for the summary [14]. Recently, summary 
generation in a data-driven manner has become very popular, 
and some works to accomplish this task have been conducted. 
A neural attention mechanism was introduced in Ref. [15] to 
build sentences and use them for summarization. An RNN-
based sequence model, SummaRuNNer, was shown in Ref. 
[16]. This model generates a summary by considering con-
tent, salience, and novelty. In a recent work, LSTM was used 
for extractive text summarization. A deletion-based LSTM 
neural network model was used for sentence compression 
[17,18]. A comparative study showed that RNN-based sum-
marization techniques return better results than traditional 
extractive summarization techniques [16].

The RNN is also widely used for abstractive text sum-
marization. In several works [19,20], recurrent neural-net-
work-based models with attention were used for abstractive 
summary generation. An RNN technique with sequence-to-se-
quence modeling was shown for abstractive text summariza-
tion in Ref. [7]. The researchers utilized a bidirectional neural 
network and incorporated a Gated Recurrent Unit (GRU) to 
introduce a new summarization model. Recently, the encod-
er-decoder framework of RNN has drawn interest in abstrac-
tive text summarization. An attentional encoder-decoder 
model based on LSTM was explained for abstractive text sum-
marization in Ref. [21,22]. Here, the encoder-decoder model 
could be bidirectional or unidirectional. LSTM with a convo-
lutional neural network (CNN) has become very popular in 
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recent times. ATSDL (Abstractive Text Summarization using 
Deep Learning) [9] is an abstractive text summarization tech-
nique that is modeled by combining LSTM and CNN, and 
considers both the semantic coherence and syntactic struc-
ture of sentences. In this model, input is given as phrases in 
lieu of simple text, and a challenging task is to identify the 
phrases from the input text [9].

Convolutional LSTM consists of a memory block and 
three controlling gates: input, forget, and output gates. These 
gates control the contents of the memory block and the output 
of the current state. Symbols and their corresponding mean-
ings are as follows. ct−1 and ct are, respectively, the contents 
of the previous and current memory cells; ht−1 and ht are, 
respectively, the outputs of the previous and current states; 
xt is an input vector; X is bitwise multiplication; + is bitwise 
summation; tanh is a hyperbolic tangent function; and σ is a 
sigmoid function. bf, bi, bc, and bo are the biases of the dif-
ferent gates.

Convolutional LSTM is a variation of traditional LSTM 
that has been applied successfully in different types of pre-
diction. A convolutional LSTM model named ConvLSTM 
was developed for the precipitation nowcasting problem, and 
its performance was compared with another model based on 
a fully connected LSTM (FC-LSTM) [23]. Precise correla-
tion among weather data was considered in this model, which 
assists predictions with better accuracy than the FC-LSTM 
model. Another work for time-series classification was pro-
posed based on convolutional LSTM [24]. The researchers 
used fully convolutional networks along with the recurrent 
neural network unit LSTM for classifying time-series data, 
and they achieved the highest classification accuracy. The 
two aforementioned convolutional LSTM-based models 

make predictions with more accuracy than traditional LSTM-
based models. The configuration of a convolutional LSTM 
is better suited than the traditional LSTM for capturing long 
data patterns effectively. This influences the classification 
and prediction accuracy.

The above discussion indicates that most works were con-
ducted to generate abstractive summaries using traditional 
LSTMs. However, none of the studies used parameter opti-
mization to obtaining the highest accuracy. However, tradi-
tional LSTM has some limitations. For example, it does not 
always ensure the semantic coherence of a summary. Because 
the gate of a traditional LSTM has no connection with the 
previous memory cell. Traditional LSTM also does not guar-
antee syntactic coherence. Additionally, the performance of 
the proposed model could be increased by finding the opti-
mal configuration of parameters. Hence, in our experiment, a 
model for generating abstractive summaries is developed by 
utilizing multiple layers of PCLSTM. We added the concept 
of an attention mechanism that assists in the generation of a 
concise memory. The process of abstractive summary gener-
ation is well fitted with the working mechanism of PCLSTM 
as it can predict the sequence of text efficiently.

3  |   ABSTRACTIVE TEXT 
SUMMARIZATION MODELS

Long short-term memorys in various forms with differ-
ent architectures have become popular for abstractive 
text summarization. Traditional LSTM, an initial archi-
tecture of LSTM [25], is widely used in text summari-
zation. However, it has some limitations, for example, 

F I G U R E  1   Traditional LSTM consists of a memory-block, and three controlling gates such as input, forget, and output gates. These gates 
control the contents of memory-block, and the output of the current state. Symbols and their corresponding meanings are as follows. ct−1 and ct are 
respectively the contents of the previous and the current memory cells, ht−1 and ht are respectively the outputs of the previous and the current states, 
xt is an input vector, X is a bitwise multiplication, + is a bitwise summation, tanh is a hyperbolic tangent function, _ is a sigmoid function. bf, bi, bc, 
and bo are the bias of the different gates 
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dependencies between cells are not strong. This can be re-
solved by using a PCLSTM, another form of LSTM [23]. 
The details of the traditional LSTM and PCLSTM are de-
scribed here.

3.1  |  Traditional LSTM unit

Long short-term memory, a recurrent neural network unit, 
is capable of holding and remembering values for a specific 
period of time. A popular form of LSTM known as tradi-
tional LSTM is well-suited for solving sequence-to-sequence 
related problems where a text sequence is given as input and 
a text sequence is generated as output. The structural design 
of the traditional LSTM is displayed in Figure 1. This archi-
tecture is composed of a memory cell and three gates: forget, 
input, and output. Here, the memory cell stores data, and the 
three other gates control the cell states [26].

According to Figure 1, a line is passed through the top of 
the architecture, which is known as a memory pipe. The input 
of the memory pipe is the previous memory content ct−1. The 
content of the memory pipe is controlled by the three con-
trolling gates. Here, the first operation found in the mem-
ory pipe is bitwise multiplication (x) between the previous 
memory content and the output received from the forget gate. 
By using a sigmoid function, the output of the forget gate is 
converted in a range of 0 to 1. If the generated output from 
the forget gate is near 0, then most of the previous memory 
content will nearly be forgotten owing to the multiplication 
between the previous memory content and the output of the 
forget gate. By contrast, a significant portion of the previous 
memory content is passed through the memory pipe when 
the output of the forget gate is close to 1. Bitwise summation 
(+) is the second operation in the memory pipe and merges 
the contents of the temporary memory, generated by the input 
gate, with that of the previous memory, which generates the 
final memory ct.

The forget gate is a single-layer neural network that per-
forms several operations and determines the amount of mem-
ory content of the previous cell that will be used at the current 
timestamp. The forget gate receives the output state ht−1 of 
previous timestamps, an input vector xt, and a bias bf as input. 
The forget gate then generates an accumulated output that is 
passed through a sigmoid activation function to generate the 
final output ft within the range of 0 to 1. The final output ft 
is multiplied by the previous memory content ct−1. The value 
of ft determines the significance of the old memory content 
over the current state. Here, the lower value of ft restricts the 
previous memory content to influence the current state, while 
the higher value of ft allows more previous memory content 
to contribute over the current state.

The input gate controls how much the temporary mem-
ory, as described earlier, influences the current memory 
cell. It takes similar input as the forget gate and produces a 
temporary memory. The temporary memory is the multipli-
cative result of a sigmoid function and a hyperbolic tangent 
function. The sigmoid function produces an output it that 
will be merged with the previous memory. The tanh activa-
tion function, whose output is between 0 and 1, determines 
the amount of temporary memory that will be merged with 
the memory content of the previous timestamp. A tempo-
rary memory having a smaller value of tanh function makes 
a lesser contribution to the current memory cell ct. By con-
trast, a temporary memory having a larger value of the tanh 
function makes a greater contribution to the current mem-
ory cell.

The output gate determines the content ht of the current 
state at time t. The inputs taken by this gate are similar to 
those of other gates, such as the output of the previous time-
stamp ht−1 and an input vector xt with a different bias value bo. 
This produces ot as output. The value of ot is within the range 
0-1 and determines how much of ct should be carried out as 
the output of the current state. When ot = 1, then ht = ct, that 
is, the entire value of ct is passed to the next state as ht.

According to the structural design of the traditional LSTM 
as shown in Figure 1, the controlling gates are not connected 
to the memory cell of the previous timestamp. Additionally, 
the output gate of the traditional LSTM remains mostly 
closed at the time of training. Hence, as mentioned earlier, 
owing to these demerits and the closure of the output gate, 
the memory content of the previous timestamp is inaccessi-
ble. This problem has an adverse effect on the performance 
of text summarization. A variation of the LSTM, called the 
peephole convolutional LSTM, can overcome this problem. 
These problems can be resolved by utilizing the merits of the 
PCLSTM.

3.2  |  Peephole convolutional LSTM unit

Long short-term memory, a recurrent neural network 
unit, is widely used in sequence-prediction-related prob-
lems. There are different architectures of LSTMs for dif-
ferent purposes. The configuration between gates in the (1)ft =�(Wxfxt+Whfht−1+bf).

(2)it =�(Wxixt+Whiht−1+bi),

(3)ct = ftct−1+ ittanh(Wxcxt+Whcht−1+bc).

(4)ot =�(Wxoxt+Whoht−1+bo),

(5)ht =ottanh(ct).
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traditional LSTM restrict the utilization of the memory 
content of previous timestamps at the time of closure 
of the output gate [23]. This problem in the traditional 
LSTM can be solved by using an additional dedicated 
connection between each gate and the memory content of 
the previous timestamp. An LSTM with this extra connec-
tion is known as PCLSTM, and this connection is denoted 
as a peephole connection. The peephole connection of a 
PCLSTM enables all three controlling gates to access the 
memory content of previous cells even when the output 
gate is closed. The working principle of the PCLSTM is 
similar to that of the traditional LSTM except for calcula-
tions for the additional connections. The architecture of 
a PCLSTM is shown in Figure 2 and is implemented as 
follows:

The PCLSTM takes an additional parameter of the mem-
ory content of previous cell ct−1 as input along with the in-
puts of the traditional LSTM, while the traditional LSTM 
does not take ct−1 as input. The connection with ct−1 in a 
PCLSTM has a significant impact on the accuracy of se-
quence-to-sequence prediction tasks. We know that abstrac-
tive text summarization is a type of sequence-to-sequence 
prediction. Hence, this interesting feature of the PCLSTM 
has motivated the application of this approach to generating 
abstractive summaries.

3.3  |  MAPCoL model

In this work, we develop a model for abstractive text sum-
marization using multiple layers of an attentional peephole 
convolutional LSTM (MAPCoL) that is based on sequence-
to-sequence modeling. The architecture of our developed 
MAPCoL model is shown in Figure 3. The model is com-
posed of two parts: encoder and decoder. Both the encoder 
and decoder consist of a collection of PCLSTMs, a type of re-
current neural network. The first four PCLSTMs in Figure 3 
represent the encoder, and the next four PCLSTMs represent 
the decoder. The encoder takes a source text as input, tries to 
understand the input sequences, and produces a small dimen-
sional representation of the source text. This representation is 
provided to the decoder, which generates another represen-
tation, the ultimate output of the encoder-decoder network, 
after all of the information is decoded.

Figure  3 shows that an input “How are you” is passed 
through the encoder-decoder network. Here, all the words 
are passed sequentially through the encoder one at a time. 
After passing the last word through the encoder, the gener-
ated representation of the encoder is forwarded to the decoder 
as input. The decoder generates one word at each time step as 
output, and the generated word is provided along with other 
information to generate the next word. After all iterations, the 
generated output is “I am fine.”.

The working procedure of MAPCoL is shown in 
Figure 4. We introduced multiple layers of PCLSTMs in 
MAPCoL to generate an abstractive summary of a given 
text. Here, multiple layers of PCLSTMs denote the avail-
ability of more than one hidden layer in this model. When 
the layer size is greater than 3, the overall performance of 
this model often drops because of overfitting and gradient 
decay over the layers from the saturated use of activation 
functions. Hence, two hidden layers are used to build the 
model. In the beginning, the source text is transformed into 

(6)it =�(Wxixt+Whiht−1+Wcict−1+bi),

(7)ft =�(Wxfxt+Whfht−1+Wcfct−1+bf),

(8)ct = ftct−1+ ittanh(Wxcxt+Whcht−1+bc),

(9)ot =�(Wxoxt+Whoht−1+Wcoct+bo),

(10)ht =ottanh(ct).

F I G U R E  2   Peephole convolutional 
LSTM (PCLSTM) is an extension of the 
traditional LSTM. In a PCLSTM, the 
previous memory cell ct−1 is linked with 
each controlling gate, known as peephole 
connections. These peephole connections 
allow an extra parameter, memory content 
ct−1, to be fed as an input in PCLSTM. This 
is absent in a traditional LSTM. This extra 
input in each gate permits access to the 
memory content of previous cells in any 
condition 
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a distributed representation by an embedding layer. The 
embedding layer performs a simple matrix multiplication 
that transforms each word into its corresponding word em-
bedded in a distributed representation. A multilayer neural 
network with a high number of hidden units is used to con-
catenate these distributed representations. The distributed 
representation is an intermediate representation of a text 
that a neural network can process very easily. The given 
input sequence is transmitted through two hidden layers 
of PCLSTMs. Each hidden layer of the PCLSTM contains 
100 hidden units. When the encoder finishes the encoding 
of the entire distributed representation, the decoder starts 
to predict the first word of the summary using an attention 
mechanism in the softmax layer. The attention mechanism 
estimates a weight for each word using a probability func-
tion that helps remember some important factors of the 
input. The attention value of a word determines how much 
attention should be paid to that word during generation 
of the output as a summary [22]. After passing through 
the last hidden layer, the average weight of each word is 

computed. This is passed through the softmax layer along 
with the content of the last hidden layer for predicting the 
next word.

The attentional weight of an input word at position t is 
computed when outputting the t′-th word as follows:

where exp(h
T
x

t

) represents the last hidden layer generated after 
processing the tth input word, and hyt′

 represents the last hidden 
layer generated from the current step of decoding. The introduc-
tion of attention strategy handles the difficulties of mapping a 
large source text into a fixed-length output. The softmax layer 
removes outliers from the output and maps a vector to a real 
value. The performance of our MAPCoL model was evaluated 
over the CNN/Daily Mail dataset. A sample of the reference 
summary (manmade) and system summary is shown in Table 1. 
Table 1 shows that the quality of the system-generated summary 
is better in terms of semantic coherence than the reference sum-
mary. The syntactic structure of the system-generated summary 
also is more structured than that of the reference summary.

4  |   EXPERIMENT

In this study, a model named MAPCoL is developed using a 
PCLSTM for generating abstractive summaries. Here, we use 
multilayers of a PCLSTM with 100 hidden units in each layer. 
We also use an attention mechanism for predicting precise results.

4.1  |  Experimental setup

The goal of this experiment is to develop a robust and reliable 
model for abstractive text summarization based on PCLSTM. 
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F I G U R E  3   An encoder-decoder network of a sequence-to-sequence model that consists of a PCLSTM block. It takes a sequence of input  
and produces another sequence as output. The LSTM encoder understands the input sequence and generates a representation that is forwarded to 
the decoder that eventually generates an output. EOL stands for end of line, which indicates the end of given input  
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F I G U R E  4   Topology of our MAPCoL model for generating 
abstractive summaries. Two layers of PCLSTM are used to build 
the model. The text is embedded using an embedding layer. Each 
PCLSTM layer has 100 hidden units. The softmax layer removes 
outliers from the output and maps a vector to a real value
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MAPCoL is implemented using TensorFlow backed with 
Keras, which is a Python library. In our experiment, the 
batch size and number of epochs have significant roles with 
regard to performance. The batch size denotes the portion 
of the dataset that is passed together through the model at 
a single time. The same data are passed through the model 
multiple times; this is known as the epoch number. For this 
experiment, after performing parameter tuning, we select 64 
as the batch size and 200 as the epoch number to train and test 
the model. By using this configuration, we hypothesize that 
our MAPCoL model produces better accuracy with regard 
to the syntactic structure and semantic coherence with this 
configurations.

4.2  |  Experimental dataset

We evaluated the performance of our MAPCoL model over 
the CNN/Daily Mail dataset, which utilizes the news from 
CNN and the Daily Mail newspaper. The dataset contains 
286 817 training pairs, 13 368 validation pairs, and 11 487 
test pairs of data.

4.3  |  Evaluation method

Traditionally, the quality of a summarized text is evaluated 
manually by humans by judging parameters such as con-
ciseness, relevancy, coherence, grammar, and readability 
[27]. Manual evaluation to determine the quality is time-
consuming, difficult, and repetitive. Therefore, research-
ers developed automated methods to evaluate summaries. 
Most of these methods are based on the similarity measure 
between a summary and its original text, but they do not 
relate the judgment with human judgment [28]. Hence, a 
recall-oriented method named ROUGE was developed to 
evaluate the quality of the summary [28]. Here, the system 
summary and the reference summary (human-generated) 

are compared to evaluate the summary quality. The 
ROUGE score is measured as follows:

where n is the number of consecutive words, Ref is the 
set of reference summaries, Count (gramn) counts the 
number of n consecutive words of the reference summary, 
and Countmatch (gramn) estimates n number of consecutive 
words matched between the reference summary and system 
summary. Here, the human-generated summary is denoted 
as the reference summary, and our model-generated sum-
mary is denoted as the system summary. The division of the 
number of matches between the two referred summaries by 
the length of the reference summary is called the ROUGE 
score. We calculate ROUGE-1 and ROUGE-2 scores that 
define the semantic similarity and syntactic structure, re-
spectively. ROUGE-1 evaluates the quality of a summary 
by taking single words into account, while ROUGE-2 eval-
uates the summary quality by considering two consecutive 
words at a time.

5  |   RESULT AND DISCUSSION

Deep-learning-based abstractive text summarization has 
become popular in recent times. We introduced a multi-
layered attentional peephole-convolutional-LSTM-based 
abstractive text summarization model, MAPCoL, for sum-
mary generation. The performance of our model was evalu-
ated using recall-oriented techniques called ROUGE-1 and 
ROUGE-2.

We applied our model to a popular CNN/Daily Mail data-
set, and the reported results were compared with the other 
models, as shown in Table 2. All mentioned models shown in 
Table 2 were evaluated over the same dataset. In addition, the 

(12)ROUGE−N=

∑

S∈Ref

∑

gramn ∈S
Countmatch(gramn)

∑

S∈Ref

∑

gramn ∈S
Count(gramn)

,

T A B L E  1   System summary and reference summary

Text System summary Reference summary

The Administration of Union Territory Daman and Diu has revoked its order that 
made it compulsory for women to tie rakhis to their male colleagues on the occasion 
of Rakshabandhan on August 7. The administration was forced to withdraw the 
decision within 24 h of issuing the circular after it received flak from employees 
and was slammed on social media.

Daman and Diu 
revokes mandatory 
Rakshabandhan in offices 
order

Daman and Diu 
revokes mandatory 
Rakshabandhan in 
offices order

Malaika Arora slammed an Instagram user who trolled her for "divorcing a rich man" 
and "having fun with the alimony." "Her life now is all about wearing short clothes, 
going to [the] gym or salon, [and] enjoying vacation[s]," the user commented. 
Malaika responded, "You certainly got to get your damn facts right before spewing 
shot on me… when you know nothing about me."

Malaika hits people who 
trolled her for divorcing 
[a] rich man

Malaika slams [a] user 
who trolled her for 
'divorcing [a] rich man'

Note: The ‘text’ column represents the input text in our model. The ‘system summary’ column shows the generated summary from our MAPCoL model. The human 
generated summary is shown in the ‘reference summary’ column.
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experimental configurations of these models are similar. We 
calculated the ROUGE score to evaluate the performance of 
our model. To perform a comparative analysis, the reported 
results of Table 2 were taken from [9].

A higher ROUGE score indicates better quality of the 
summary, while the lower ROUGE score indicates the op-
posite. All models shown in Table 2 are based on two dif-
ferent technologies: our developed MAPCoL is based on 
the PCLSTM, and the other four models [SummaRuNNer 
[16], Graph-Based [29], feats-lvt2k-2sent-ptr [7], and 
ATSDL [9]] are based on the traditional LSTM. Table  2 
compares the performance of the PCLSTM-based model 
with that of the traditional LSTM-based models. Among 
the traditional LSTM-based models, the SummaRuNNer 
obtained the highest ROUGE-1 score of 39.6%, and model 
ATSDL achieved the highest ROUGE-2 score of 17.8%. 
However, among the five models, the highest ROUGE-1 
and ROUGE-2 scores were obtained by the PCLSTM-based 
model MAPCoL: 39.61% and 20.87%, respectively. The 
comparison shows that although the improvement of the 
ROUGE-1 score of the PCLSTM-based model is not large, 
we found a significant improvement of the ROUGE-2 score 
of the PCLSTM-based model when compared with the tra-
ditional LSTM-based model. We reported on the possible 
reasons of such accuracy. The utilization of the PCLSTM 
instead of the traditional LSTM enables us to capture the 
long-term data dependency very effectively with the help 
of the memory content of previous timestamps. It is known 
that the structural quality (ROUGE-2) of a summary de-
pends on better sequence generation in the output, which is 
significantly influenced by an effectively captured long data 
pattern. In addition, the incorporation of the multilayered 
topology of PCLSTM also contributed to achieving better 
accuracy in this regard.

Another goal of this study is to find the configurations 
where our model works better and those where it does not. 
Some comparative analyses were conducted by changing the 
values of parameters to accomplish these tasks. The scores 
of ROUGE-1 and ROUGE-2 of our MAPCoL model were 

observed for different hidden units such as 50, 100, and 150. 
The behavior of our model in these experiments is shown in 
Figure 5. We reported on the lowest ROUGE-1 and ROUGE-2 
scores when the number of hidden units was 50, and found a 
sharp increase in the performance when the hidden unit size 
was increased to 100. However, we found no significant im-
provement in the performance of MAPCoL when the number 
of hidden units was higher than 100, and the training time 
also increased significantly. These experiments suggested 
that the number of hidden units be kept at 100 in order to 
achieve the maximum performance of MAPCoL.

The performance of our MAPCoL model was also ob-
served by changing the batch size to 32, 64, and 128. Here, 
the batch size defines how much volume of the dataset will 
be passed through the model at a single time. The charac-
teristics of the MAPCoL model with different batch sizes is 
shown in Figure 6. When the model was trained by keeping 
the batch size at 32, we reported the lowest ROUGE-1 and 
ROUGE-2 scores. With an increase of the batch size to 64, 
the performance of MAPCoL was ameliorated significantly 
and achieved the highest ROUGE scores. By contrast, when 

T A B L E  2   Performance comparison for MAPCoL model and 
other models on CNN/Daily Mail dataset

Model ROUGE-1 (%) ROUGE-2 (%)

SummaRuNNer 39.60 16.20

Graph-Based 38.10 13.90

feats-lvt2k-2sent-ptr 36.40 17.77

ATSDL 34.90 17.80

MAPCoL 39.61 20.87

Note: ROUGE-1 denotes the quality of system summary by taking single 
words into consideration, while ROUGE-2 takes two consecutive words into 
consideration. Here, highlighted values indicate the best results among all 
models.

F I G U R E  5   Reported ROUGE scores of our developed model 
under variant sizes of hidden units. The performance of MAPCoL 
increases sharply until the number of hidden units is 100. If unstable, 
the performance keeps improving at a very slow rate after that 
mark. Note that a greater number of hidden units requires more 
time to complete the training [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the batch size was increased to 128, we reported a notable de-
cline in the performance of MAPCoL. The model behaved in 
this way because underfitting and overfitting problems occur 
when the batch sizes were 32 and 128, respectively. This led 
to poor generalization of the given new data. Additionally, a 
large batch size adversely increased the training time rather 
than the performance.

The performance of a machine learning model also de-
pends on the epoch number. Hence, it is essential to deter-
mine the optimal epoch number where our model performs 
best. We observed the performance of MAPCoL from 100 to 
250 epochs as shown in Figure 7. We found a linear increase 
in the ROUGE-1 and ROUGE-2 scores until the epoch num-
ber was 200, and no visible improvement afterward. These 
experiments suggest that the number of hidden units should 
be 100, the batch size 64, and that the model be trained for 
200 epochs.

Different models behave differently over the same dataset. 
We reported on the accuracy gain of our MAPCoL model to 
quantify the training accuracy over the CNN/Daily Mail data-
set. The accuracy was calculated by comparing the predicted 
result with the true result. Figure 8 shows that the model was 

efficiently fitted with the dataset and that the training accu-
racy increased with an increasing epoch number until the 
number was 200. In addition, the accuracy flattened after 200 
epochs were completed.

The discussed experiments verified our hypothesis that 
the PCLSTM-based MAPCoL model outperformed the state-
of-the-art models for abstractive text summarization. We 
found that the peephole connection of the PCLSTM had a 
significant impact on generating semantically and syntacti-
cally coherent abstractive summaries. The conscious choice 
of using multiple layers of a PCLSTM helped us to effec-
tively capture long data dependency, which contributed sig-
nificantly to generating concise summaries.

6  |   CONCLUSION

We introduced a model named MAPCoL for abstractive 
summary generation using multiple layers of a PCLSTM. 
The peephole connection and incorporation of multiple lay-
ers of PCLSTM enabled our model to generate semanti-
cally and syntactically coherent abstractive summaries with 
higher accuracy than any state-of-the-art models. Most of 
the developed abstractive summarization models have some 
limitations that were resolved by our MAPCoL model. It is 
known that the most of the existing abstractive text summa-
rization techniques generate fixed-length summaries, while 
our introduced model generates variable-length summaries 
by taking variable lengths of text as input. We prioritized 
the semantic and syntactic coherence of the summaries dur-
ing development of the model. We handled rare words and 
unwanted symbols while preprocessing a given text. We 
trained the multilayered peephole convolutional LSTM-
based model using this preprocessed data. An important as-
pect of our model is that it can receive any length of input 
data and can generate any length of output as a summary. 
A popular dataset, CNN/Daily Mail, was used to evaluate 
the performance of MAPCoL, and we compared the per-
formance to other abstractive summarization models that 
were also evaluated over the same dataset. To determine 
for which configurations our model performs more effec-
tively, experiments were conducted by changing the values 
of different parameters, and the optimal configurations were 
reported.
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F I G U R E  7   Reported ROUGE scores of our developed model 
under different epoch numbers. The figure shows that the performance 
of the MAPCoL model increases with an increase in the epoch 
number from 100 to 200. An epoch number over 200 does not have a 
significant effect on the performance  
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