DOI QR코드

DOI QR Code

Long-term Synaptic Plasticity: Circuit Perturbation and Stabilization

  • Park, Joo Min (Department of Physiology, Jeju National University School of Medicine) ;
  • Jung, Sung-Cherl (Department of Physiology, Jeju National University School of Medicine) ;
  • Eun, Su-Yong (Department of Physiology, Jeju National University School of Medicine)
  • Received : 2014.11.04
  • Accepted : 2014.11.12
  • Published : 2014.12.30

Abstract

At central synapses, activity-dependent synaptic plasticity has a crucial role in information processing, storage, learning, and memory under both physiological and pathological conditions. One widely accepted model of learning mechanism and information processing in the brain is Hebbian Plasticity: long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD are respectively activity-dependent enhancement and reduction in the efficacy of the synapses, which are rapid and synapse-specific processes. A number of recent studies have a strong focal point on the critical importance of another distinct form of synaptic plasticity, non-Hebbian plasticity. Non-Hebbian plasticity dynamically adjusts synaptic strength to maintain stability. This process may be very slow and occur cell-widely. By putting them all together, this mini review defines an important conceptual difference between Hebbian and non-Hebbian plasticity.

Keywords

References

  1. Stanton PK. LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus. 1996;6:35-42. https://doi.org/10.1002/(SICI)1098-1063(1996)6:1<35::AID-HIPO7>3.0.CO;2-6
  2. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4 Suppl): 1007S-1015. https://doi.org/10.1093/jn/130.4.1007S
  3. Nosyreva ED, Huber KM. Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptordependent long-term depression. J Neurosci. 2005;25:2992-3001. https://doi.org/10.1523/JNEUROSCI.3652-04.2005
  4. Bardoni R. Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr Neuropharmacol. 2013;11:477-483. https://doi.org/10.2174/1570159X11311050002
  5. Shapiro M. Plasticity, hippocampal place cells, and cognitive maps. Arch Neurol. 2001;58:874-881. https://doi.org/10.1001/archneur.58.6.874
  6. Zhang J, Li Y, Xu J, Yang Z. The role of N-methyl-D-aspartate receptor in Alzheimer's disease. J Neurol Sci. 2014;339:123-129. https://doi.org/10.1016/j.jns.2014.01.041
  7. Amiri A, Sanchez-Ortiz E, Cho W, Birnbaum SG, Xu J, McKay RM, Parada LF. Analysis of FMR1 deletion in a subpopulation of post-mitotic neurons in mouse cortex and hippocampus. Autism Res. 2014;7:60-71. https://doi.org/10.1002/aur.1342
  8. Steele JW, Brautigam H, Short JA, Sowa A, Shi M, Yadav A, Weaver CM, Westaway D, Fraser PE, St George-Hyslop PH, Gandy S, Hof PR, Dickstein DL. Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model. J Comp Neurol. 2014;522:2319-2335. https://doi.org/10.1002/cne.23536
  9. Park JM, Hu JH, Milshteyn A, Zhang PW, Moore CG, Park S, Datko MC, Domingo RD, Reyes CM, Wang XJ, Etzkorn FA, Xiao B, Szumlinski KK, Kern D, Linden DJ, Worley PF. A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization. Cell. 2013;154:637-650. https://doi.org/10.1016/j.cell.2013.07.001
  10. Chung L, Bey AL, Jiang YH. Synaptic plasticity in mouse models of autism spectrum disorders. Korean J Physiol Pharmacol. 2012;16:369-378. https://doi.org/10.4196/kjpp.2012.16.6.369
  11. Hur SW, Park JM. Long-term potentiation of excitatory synaptic strength in spinothalamic tract neurons of the rat spinal cord. Korean J Physiol Pharmacol. 2013;17:553-558. https://doi.org/10.4196/kjpp.2013.17.6.553
  12. MacDonald JF, Jackson MF, Beazely MA. Hippocampal longterm synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol. 2006;18:71-84. https://doi.org/10.1615/CritRevNeurobiol.v18.i1-2.80
  13. Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron. 2008;59:70-83. https://doi.org/10.1016/j.neuron.2008.05.023
  14. Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ. Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex. Korean J Physiol Pharmacol. 2010; 14:337-343. https://doi.org/10.4196/kjpp.2010.14.5.337
  15. Kim EC, Lee MJ, Shin SY, Seol GH, Han SH, Yee J, Kim C, Min SS. Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase C${\delta}$ and ${\varepsilon}$. Korean J Physiol Pharmacol. 2013;17:51-56. https://doi.org/10.4196/kjpp.2013.17.1.51
  16. Park JS, Yoo SB, Kim JY, Lee SJ, Oh SB, Kim JS, Lee JH, Park K, Jahng JW, Choi SY. Effects of saccharin intake on hippocampal and cortical plasticity in juvenile and adolescent rats. Korean J Physiol Pharmacol. 2010;14:113-118. https://doi.org/10.4196/kjpp.2010.14.2.113
  17. Park SW, Jang HJ, Cho KH, Kim MJ, Yoon SH, Rhie DJ. Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex. Korean J Physiol Pharmacol. 2012;16:65-70. https://doi.org/10.4196/kjpp.2012.16.1.65
  18. Heise C, Gardoni F, Culotta L, di Luca M, Verpelli C, Sala C. Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Front Cell Neurosci. 2014;8:35.
  19. Cho RW, Park JM, Wolff SB, Xu D, Hopf C, Kim JA, Reddy RC, Petralia RS, Perin MS, Linden DJ, Worley PF. mGlu- R1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron. 2008;57:858-871. https://doi.org/10.1016/j.neuron.2008.01.010
  20. Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10:358-364. https://doi.org/10.1016/S0959-4388(00)00091-X
  21. Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF. Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron. 2010;68:1128-1142. https://doi.org/10.1016/j.neuron.2010.11.008
  22. Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature. 2001;411:962-965. https://doi.org/10.1038/35082096
  23. O'Riordan K, Gerstein H, Hullinger R, Burger C. The role of Homer1c in metabotropic glutamate receptor-dependent longterm potentiation. Hippocampus. 2014;24:1-6. https://doi.org/10.1002/hipo.22222
  24. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 2006;52:445-459. https://doi.org/10.1016/j.neuron.2006.08.033

Cited by

  1. Cordycepin Ameliorates Synaptic Dysfunction and Dendrite Morphology Damage of Hippocampal CA1 via A1R in Cerebral Ischemia vol.15, pp.None, 2021, https://doi.org/10.3389/fncel.2021.783478