• Title/Summary/Keyword: Locomotion Techniques

Search Result 15, Processing Time 0.025 seconds

A Comparative Study of Evolutionary Computation Techniques for Locomotion Control of Modular Snake-like Robots (모률라 뱀형 로봇의 이동 제어에 대한 진화연산 기법 비교)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.604-611
    • /
    • 2009
  • Modular snake-like robots are robust for failure and have flexible locomotion for environments, but are difficult to control. Various phase and evolutionary approaches for modular robots have been studied for many years, but there are few comparisons among these methods. In this paper, Phase, GAps, GA and GP approaches are implemented and compared for flat, stairs, and slope environments. In addition, simulations of the locomotion evolution for modular snake-like robot are executed in Webots environments.

Animation Support for Networked Virtual Environments

  • Ko, Hyeongseok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.13-17
    • /
    • 1996
  • This paper presents animation techniques and issues involved in virtual environments where the participants interact with each other through a network. The state of the participant should be recognized at each local site, and broadcast to the other sites. Because information exchange is minimal, animation techniques are applied to convert the incoming low DOF parameters into high DOF joint angles that completely determine the configuration of the agents at each frame. As a case study, a software system VRLOCO is introduced, which has been developed by the author over the last five years. From a simple stream of body center positions, VRLOCO generates realistic curved path human locomotion in real-time. Based on the heading direction and speed, the locomotion automatically switches among five different primitives: walking, running, lateral stepping, backward stepping, and turnaround. The techniques presented here proved robust and faithful: the algorithm is not sensitive to the noise in the data, and the resulting animation conforms well with the original data.

  • PDF

Usability Evaluation Model for Locomotion Technology in VR Space (VR 공간에서의 이동기술 평가를 위한 사용성평가 모델)

  • Ding, Xiu Hui;Xie, Qiao;Jang, Young-Jick;Yun, Tae-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose an evaluation model to evaluate the usability of locomotion technologies in a virtual environment (VE; Virtual Environment) and try to verify them through a case study. The order of this study firstly, the factors for analysis are derived through theoretical approach to locomotion technology on VR. Second, the definition and concept of mobile technology and usability evaluation in VR are established theoretically and the elements for analysis are derived through the literature survey through the theoretical approach to VE. Third, based on this, a usability evaluation model is proposed to evaluate locomotion technologies in the VE. Finally, the results are derived by experimenting and analyzing the existing VR games applied with the three locomotion technologies derived from the literature survey. Through this paper, the locomotion technology in VR is not used separately, but can propose mobile technology that conforms to VR game content characteristics by assessing its usability and analyzing it, and it is considered to be a significant data that can suggest criteria for identifying problems in locomotion technology.

Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot (유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험)

  • Kim, Hee-Joong;Jun, Bong-Huan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

Data-driven camera manipulation about vertical locomotion in a virtual environment (가상환경에서 수직 운동에 대한 데이터 기반 카메라 조작)

  • Seo, Seung-Won;Noh, Seong-Rae;Lee, Ro-Un;Park, Seung-Jun;Kang, Hyeong-Yeop
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, the goal is to investigate how manipulating the camera can minimize motion sickness and maximize immersion when a user moves in a virtual environment that requires vertical movement. In general, since a user uses virtual reality in a flat space, the actual movement of the user and the virtual movement are different, resulting in sensory conflict, which has the possibility of causing virtual reality motion sickness. Therefore, we propose three powerful camera manipulation techniques, implement them, and then propose which model is most appropriate through user experiments.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Fabrication of MDOF IPMC Actuators to Generate Undulatory Motion (파동형 움직임이 가능한 다자유 IPMC 구동기 제작)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.119-123
    • /
    • 2006
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. Generally, the IPMC actuator has been fabricated in electroless plating technique, while it needs very long fabrication time and shows poor repeatability in the actuation performance owing to the variables in chemical fabrication process. Therefore, the novel fabrication methods were investigated by combining electroless plating and electroplating techniques capable of patterning precisely. On the whole, two different methods were compared and analyzed with similar thickness level of Platinum electrodes. Present results show that mixing chemical reduction and electroplating can be a promising candidate for electrode patterning.

  • PDF

Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015 (DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략)

  • Ahn, DongHyun;Shin, JuSeong;Jun, Youngbum;Sohn, Kiwon;Jang, Giho;Oh, Paul;Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.

Vibration Characteristics of Patterned IPMC Actuator (패턴된 IPMC 작동기의 진동특성)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.718-721
    • /
    • 2007
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. This actuator is fabricated by combining electroless plating and electroplating techniques capable of patterning precisely and controlling a thickness of Pt electrode layer. The FRF analysis was conducted by a mechanical shaker and direct electrical excitation which is based on sweep sine wave function. From this result, the proper young‘s modulus of Platinum was investigated and applied on expecting the vibration characteristics of patterned IPMC actuator. The calculated maximum displacement of the patterned IPMC was 2.32mm under an applied 4mN/mm. The natural frequency was increased however displacement was decreased in according to increase a thickness of Pt.

  • PDF

Understanding Diffusion in Cells and Living Tissues (세포 및 생체조직에서 확산에 관한 이해)

  • Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2007
  • Macromolecule diffusion in cells and tissues is important for cell signaling, metabolism and locomotion. Biophysical methods, including non-invasive or minimally invasive in-vivo photobleaching techniques and single quantum-dot tracking, have been used to measure the rates of macromolecule diffusion in living cells and tissues, including central nervous system and tumors. Mathematical modeling and statistical analysis of experimental data revealed various modes of diffusion, which are strongly coupled with spatiotemporal changes in nanoscale structures and material properties.