• Title/Summary/Keyword: Local statistic

Search Result 76, Processing Time 0.022 seconds

Influence Analysis on a Test Statistic in Canonical Correlation Analysis

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.347-355
    • /
    • 2001
  • We propose a method for detecting influential observations that have a large influence on the likelihood ratio test statistic for the two sets of variables are uncorrelated with one another. For this purpose we derive a local influence measure for the likelihood ratio test statistic under certain perturbation scheme. An illustrative example is given to show the effectiveness of the proposed method on the identification of influential observations.

  • PDF

GOODNESS-OF-FIT TEST USING LOCAL MAXIMUM LIKELIHOOD POLYNOMIAL ESTIMATOR FOR SPARSE MULTINOMIAL DATA

  • Baek, Jang-Sun
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.3
    • /
    • pp.313-321
    • /
    • 2004
  • We consider the problem of testing cell probabilities in sparse multinomial data. Aerts et al. (2000) presented T=${{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2$ as a test statistic with the local least square polynomial estimator ${{p}_{i}}^{*}$, and derived its asymptotic distribution. The local least square estimator may produce negative estimates for cell probabilities. The local maximum likelihood polynomial estimator ${{\hat{p}}_{i}}$, however, guarantees positive estimates for cell probabilities and has the same asymptotic performance as the local least square estimator (Baek and Park, 2003). When there are cell probabilities with relatively much different sizes, the same contribution of the difference between the estimator and the hypothetical probability at each cell in their test statistic would not be proper to measure the total goodness-of-fit. We consider a Pearson type of goodness-of-fit test statistic, $T_1={{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2/p_{i}$ instead, and show it follows an asymptotic normal distribution. Also we investigate the asymptotic normality of $T_2={{\Sigma}_{i=1}}^{k}{[{p_i}^{*}-E{(p_{i}}^{*})]^2/p_{i}$ where the minimum expected cell frequency is very small.

LOCAL INFLUENCE ON THE GOODNESS-OF-FIT TEST STATISTIC IN MAXIMUM LIKELIHOOD FACTOR ANALYSIS

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.489-498
    • /
    • 1998
  • The influence of observations the on the goodness-of-fit test in maximum likelihood factor analysis is investigated by using the local influence method. under an appropriate perturbation the test statistic forms a surface. One of main diagnostics is the maximum slope of the perturbed surface the other is the direction vector cor-responding to the curvature. These influence measures provide the information about jointly influence measures provide the information about jointly influential observations as well as individ-ually influential observations.

Test of the Hypothesis based on Nonlinear Regression Quantiles Estimators

  • Choi, Seung-Hoe
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This paper considers the likelihood ratio test statistic based on nonlinear regression quantiles estimators in order to test of hypothesis about the regression parameter $\theta_o$ and derives asymptotic distribution of proposed test statistic under the null hypothesis and a sequence of local alternative hypothesis. The paper also investigates asymptotic relative efficiency of the proposed test to the test based on the least squares estimators or the least absolute deviation estimators and gives some examples to illustrate the application of the main result.

  • PDF

A Nonparametric Goodness-of-Fit Test for Sparse Multinomial Data

  • Baek, Jang-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.303-311
    • /
    • 2003
  • We consider the problem of testing cell probabilities in sparse multinomial data. Aerts, et al.(2000) presented $T_1=\sum\limits_{i=1}^k(\hat{p}_i-p_i)^2$ as a test statistic with the local polynomial estimator $(\hat{p}_i$, and showed its asymptotic distribution. When there are cell probabilities with relatively much different sizes, the same contribution of the difference between the estimator and the hypothetical probability at each cell in their test statistic would not be proper to measure the total goodness-of-fit. We consider a Pearson type of goodness-of-fit test statistic, $T=\sum\limits_{i=1}^k(\hat{p}_i-p_i)^2/p_i$ instead, and show it follows an asymptotic normal distribution.

  • PDF

Change-Points with Jump in Nonparametric Regression Functions

  • Kim, Jong-Tae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.193-199
    • /
    • 2005
  • A simple method is proposed to detect the number of change points with jump discontinuities in nonparamteric regression functions. The proposed estimators are based on a local linear regression fit by the comparison of left and right one-side kernel smoother. Also, the proposed methodology is suggested as the test statistic for detecting of change points and the direction of jump discontinuities.

  • PDF

Influence Measures for the Likelihood Ratio Test on Independence of Two Random Vectors

  • Jung, Kang-Mo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.13-16
    • /
    • 2001
  • We compare methods for detecting influential observations that have a large influence on the likelihood ratio test statistics that the two sets of variables are uncorrelated with one another. For this purpose we derive results of the deletion diagnostic, the influence function, the standardized influence matrix and the local influence. An illustrative example is given.

  • PDF

A New Algorithm Based on ASH in Local Modes Detection of Pathrate (ASH를 이용한 Pathrate에서의 Local Mode 검출 알고리즘)

  • Huang, Yue;Kim, Yong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.1-8
    • /
    • 2006
  • Network measurement is a vital part of network traffic engineering. In a network, the metric 'capacity' characterizes the maximum throughput the path can provide when there is no traffic load, or the minimum transmission rate among all links in a path. Pathrate is one of the most widely used network capacity measurement tools nowadays. It's famous for its accurate estimation result and non restriction of the temporal network traffic condition. After several years of development, its performance becomes more stable and reliable. Extant local modes detection algorithm in pathrate is based on statistic methodology histogram. This paper suggests a new algorithm for local modes detection based on ASH (Averaged Shifted Histogram). We have implemented this algorithm and will prove it can accomplish the same task as the original one with a better result.

  • PDF

Feature Extraction of Welds from Industrial Computed Radiography Using Image Analysis and Local Statistic Line-Clustering (산업용 CR 영상분석과 국부확률 선군집화에 의한 용접특징추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.103-110
    • /
    • 2008
  • A reliable extraction of welded area is the precedent task before the detection of weld defects in industrial radiography. This paper describes an attempt to detect and extract the welded features of steel tubes from the computed radiography(CR) images. The statistical properties are first analyzed on over 160 sample radiographic images which represent either weld or non-weld area to identify the differences between them. The analysis is then proceeded by pattern classification to determine the clustering parameters. These parameters are the width, the functional match, and continuity. The observed weld image is processed line by line to calculate these parameters for each flexible moving window in line image pixel set. The local statistic line-clustering method is used as the classifier to recognize each window data as weld or non-weld cluster. The sequential procedure is to track the edge lines between two distinct regions by iterative calculation of threshold, and it results in extracting the weld feature. Our methodology is concluded to be effective after experiment with CR weld images.

Detection of local structural chages in time series (시계열에서 국소구조변화의 탐지에 관한 연구)

  • Jae June Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.299-311
    • /
    • 1994
  • In time series data, atypical observations are not rare. Several approaches have been proposed to detect a single outlier, but the effectiveness of those procedures is in doubt when patchy outliers are present. In this paper, the atypicality in patchy outliers is interpreted as a local structural change, and a model is introduced to entertain its effect on the series. Based on this model, a statistic and a procedure are proposed for identifying those local structural changes. The performance of the proposed procedure is evaluated through simulation study and the analysis of real data sets.

  • PDF