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GOODNESS-OF-FIT TEST USING LOCAL MAXIMUM
LIKELITHOOD POLYNOMIAL ESTIMATOR FOR SPARSE
MULTINOMIAL DATAT

JANGSUN BAEK!

ABSTRACT

We consider the problem of testing cell probabilities in sparse multino-
mial data. Aerts et al. (2000) presented T = Zf=1 {pt — E(p})}* as a test
statistic with the local least square polynomial estimator p}, and derived
its asymptotic distribution. The local least square estimator may produce
negative estimates for cell probabilities. The local maximum likelihood poly-
nomial estimator p;, however, guarantees positive estimates for cell proba-
bilities and has the same asymptotic performance as the local least square
estimator (Baek and Park, 2003). When there are cell probabilities with rel-
atively much different sizes, the same contribution of the difference between
the estimator and the hypothetical probability at each cell in their test statis-
tic would not be proper to measure the total goodness-of-fit. We consider
a Pearson type of goodness-of-fit test statistic, 71 = Zle {p: — E(®:)}?/pi
instead, and show it follows an asymptotic normal distribution. Also we
investigate the asymptotic normality of Tp = Zle{ﬁi — E(p;)}? where the
minimum expected cell frequency is very small.

AMS 2000 subject classifications. Primary 62G10; Secondary 62G05.
Keywords. Goodness of fit, local maximum likelihood, local polynomial estimator, sparse
multinomial data.

1. INTRODUCTION

Suppose we observe the cell frequency N; from the multinomial distribution
with the cell probability p;,i = 1,...,k. Then Y | N; = n is the total num-
ber of observations. When the total number of observations n is relatively small
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comparing to the number of cell k£, the multinomial data is called to be sparse.
In order to estimate p = (py,...,px)T, we may consider the frequency estima-
tor p = (P1,...,pk)%, i = N;/n, i = 1,...,k. The frequency estimator is not
consistent under sparse asymptotics where n/k remains small constant as both
n and k become infinite. For an ordinal categorical variable it has been pro-
posed to smooth the roughness of the frequency estimators away by borrowing
information from neighboring cells to estimate the cell probabilities. Simonoff
(1983) considered an estimator based on a maximum penalized likelihood crite-
rion. Burman (1987a), Hall and Titterington (1987) proposed kernel estimators.
Aerts et al. (1997), Baek (1998) studied the properties of the local polynomial
estimator based on the local least square criterion. A drawback to the local least
square estimator is that the probability estimate can be negative. Baek and Park
(2003) investigated the asymptotic properties of the local maximum likelihood
polynomial estimator, which guarantees the positive probability estimates.

If we are interested in testing Hy : p = po, where pg = (pm,...,pko)T, we
usually use the Pearson chi-square statistic

or the likelihood ratio statistic

k N
G2=2ZMlog< ’).
i=1 npio

Under Hy, these statistics are asymptotically distributed as x? with (k—1) degrees
of freedom if min;{np;} — oo as n — oco. For sparse multinomial data, however,

p; gets small since K — oo as n — o0o. Therefore the condition min; np; — oo
of the X?k—l) approximation can not be satisfied for sparse multinomial data.
Simonoff (1985) proposed a test statistic of the standardized form with his maxi-
mum penalized likelihood estimators, and obtained the critical value by the sim-
ulation of the statistic under the null hypothesis. Aerts et al. (2000) suggested
T = Zle{p‘; — E(p})}? with their local least square polynomial estimator p,
and obtained asymptotic normality of the test statistic under the null hypothesis.

When there are cell probabilities with relatively much different sizes, the
same contribution of the difference between the estimator and the hypothetical
probability at each cell in their test statistic would not be proper to measure
the total goodness-of-fit. Let p; be the local maximum likelihood polynomial
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estimator. We consider a Pearson type of goodness-of-fit test statistic, Ty =
¥ {p: — E(p:)}?/pi, and show it follows an a.symptotlc normal distribution.
Also we investigate the asymptotic normality of Tp = Z,—=1{Pz E(p;)}? when
the minimum expected cell frequency is very small. Section 2 contains the main
results. There we define the local maximum likelihood polynomial estimator of
sparse multinomial probability, and derive the limiting distributions of the test
statistics, 71 and T5.

2. ASsYMPTOTIC DISTRIBUTION OF THE TEST STATISTICS

We assume that the p;’s are generated by a latent density function f(-) on
[0,1] through the relation

ifk
Piz/ fludu, i=1,... k.
(

i-1)/k

When Zle N; = n is fixed, the multinomial observed frequency vector (Ny,...,
Ni)T can be viewed as a set of independent Poisson random variables (Kendall
and Stuart, 1979, p.449). Namely, N;’s are independent Poisson random vari-
ables, conditional on }:le N; = n, with the mean p(N;|X;) = np;, respectively,
if we let X; = (¢ — 1/2)/k. The log-likelihood of k£ independent Poisson random
variables is then i
1= {Nlog(npi) — np;},

i=1
where Ele N; = n (ignoring constants) (Simonoff, 1996, p. 240).

In order to estimate the probability p at the cell with its center X = z, we
first get the estimator of log(np) by local fitting, and then apply the inverse of
the link function. This involves centering the data about = and weighting the
conditional log-likelihood with Kj(X; — z), where K is the usual kernel function
and h is the bandwidth. The local maximum likelihood polynomial estimator of
log(np) is then given by By, where (,BO, . ,ﬁt)T maximizes

k

SN {Bo+ -+ 8K =)'} - exp {Bo + -+ + BuUX: = 2)'} | Kn(Xs - 2).

i=1

The probability p can then be estimated by applying the inverse function to give

(238, h) = = exp(fo).
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This guarantees that the estimate will be nonnegative. Throughout the paper we
assume the following regularity conditions.

(C1) K(:) is a symmetric, continuous kernel with bounded support [—1, 1].
(C2) f+1(.) is continuous on [0, 1).

Baek and Park (2003) showed that the asymptotic bias of p (z; ¢, h) equals

/zt“Kt(z)dz {S(t+1)(f,---,f(t+l))}ht+1

t+ 1)k

where S(;,) is a function of f,..., f (t+1) the asymptotic variance is

(n2kh)~lnp; / Ki(2)2dz,

and the estimator attains the optimal rate of convergence. For the definition of
Kt, let

v = /le(z)dz,
and let Ny be the (¢ + 1) x (¢ + 1) matrix having (4, j) entry equal to v;4;_2, and

M;(z) be the same as N; but with the first column replaced by (1,z,...,2})7.
For |N¢| # 0, K;(2) is defined by

Fote) - D)

K(z).

We will use the result of the asymptotic variance of the local maximum
likelihood estimator to get the limiting distribution of the test statistics T)
and T». In the case where the expected cell frequency is bounded below, i.e.
min;{np;} > 0, T} would be preferable since the relative difference between the
probability estimate and the hypothetical probability is more proper measure of
goodness-of-fit. When the expected cell frequency gets smaller as the sample size
increases, we cannot calculate the relative difference and T5 could be used.

Burman (1987b) derived asymptotic normality for quadratic forms in NV; —np;,
which include the Pearson statistic, x? = 5_(NV;—np;)?/(np;) and the test statistic
like 3 (N; —np;)?. The results of the limiting distributions of Pearson x? statistic
and Y (N; — np;)? are stated as Lemma 2.1 and Lemma 2.2, respectively.
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LEMMA 2.1 (Burman, 1987b, Corollary 3.3 (a) (i)). Let min;{np;} = e1p >
0 for all n. Then as n — 0o and k — oo,

K"_:(’f_—i) 4, N(0,1),

Oin

if ke3, — oo, where 0}, = 2k +n"1 Y p; L.

LEMMA 2.2 (Burman, 1987b, Corollary 3.4). Let max;{p;} = €2, = 0. Th-
en asn — oo and k — oo,

02n

if ne3, — 0, where 03, = 2n2Y"p? +n.
Now we derive the asymptotic distribution of 7} when min;{np;} > 0 is satisfied.

THEOREM 2.1. Assume (C1), (C2), and h — 0, nh3 — 0o as n — oo. Let
min; {np;} = €1, > O for all n, and let n, = min(n,nkh). If ked, — oo and
S P/ (neo1n) = 0 as n. — oo, where 0%, =2k +n~! S piTL, then

(= >[Z{pz EG)Y _(k=D| 4,y 1,

n

PROOF. First we decompose v/n(p; — E(p;)) into three parts as follows;

V(b — E(fs)) = Vn(pi — pi) + Vnldi — P:) + Vn(pi — E(p:)) (2.1)

We examine the limiting behavior of the second part /n(p; —p;). Since Theorem
1 of Baek and Park (2003) shows

Var(p;) ~ (n2kh) ' n / Ky(2)%dz,

it follows that

Var (v/np;) ~ (nkh)~ /Kt 2dz,

which equals O((nkh) ~!) because min;{np;} = €1, > 0. Also we know

E (vnpi) = Vnp; , Var (Vnp;) = M’

n
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which is O(n~1/2). So it is easy to see that

Vnp; = v/np; + O, (n—1/2) ,

Vnp; = /nE(p;) + Op ((”kh)_l/z) :
Therefore

VA (Bi = i) = vV (B(:) = pi) + Op (na/?)
where n, = min(n,nkh). Plugging the last result into the equation (2.1) leads to
Valpi — B() = Vol - pi) + 0p (n712) i= 1, k. (22)
Let
= V(1 — E@pr), -0 — ()",
Xn = \/h_(ﬁl — P15+ Pk _pk)T,
0, (n*"1/2) = (n."12) (0,(1), ..., 0p(1))T .

Then the equation (2.2) can be expressed with the vectors W, X, O,(n,~1/2)
as Wy, = X, + Op(n,~/?). Let C = diag(p7',...,p;"). Then

WICW,, = XTCX, + 20,(n."Y2)TCX,, + O,(n,~Y2)TCO,(n,"1/2).

CX,, in the second part Op(n*_l/ 2TCX,, in the right hand side of the above

equation is
( St SV Pk)) ’

p1 y43
and this becomes Op(n. —1/2)(p7t,. .. Py HT since

V(i — pi) = Op (n*—1/2) ,i=1,...,k.
So the second part becomes Op(n; 1) 25 p7l. The thll‘d part Op(n.~1/2)TCx

O, (n.~1/2) is obtained similarly to be Op( 1) S p;l, which is the same as
the second part asymptotically. Thus we can rewrite W2 CW,, as

wIcw, = XICX, + 0,(n.1) Z it (2.3)
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Subtracting (k — 1) and dividing oy, from the both sides of the equation (2.3)
gives us that

WICW, —(k—1) XICX,-(k—1) 4 Op(n; 1) Zz_lpl 1

Oln Oln Oln

From the condition of the theorem,

k p__l
Z X 0 as n,— oo,
i—1 1n

the third part of the last equation is 0,(1). As {XZCX, — (k—1)}/01n converges
in distribution to N(0,1) by Lemma 2.1, the result is immediate by Slutsky
theorem. O

When min;{np;} is very small or if np;’s are not too different from one an-
other, Ty = 3% {#; — E($:)}? could be used instead of Pearson chi-square type
of statistic. The limiting distribution of T3 is obtained in the following Theorem
2.2.

THEOREM 2.2. Assume (C1), (C2), and h — 0, nh® — 00 as n = oo. Let
max;{p;} = €2n, — 0, and let k. = min(k,k2h). If nes, — 0 and k/(k.o2,) — 0
as k. — oo, where 0%, =2n? 3" p? +n, then

<0—2n> [Z {pi = B(pi)}* - (I—pr)J -4 N(O,1).

PROOF. Note that nY % {p; — E(®:)}? = S {Vn(d: — E($;))}?, and we
will investigate the limiting behav1or of /n(p; — E(p;)) first as in the proof of

Theorem 2.1. Var (v/np;) is (nkh) ™ np; [ K;(z)2dz asymptotically, but the con-
dition min;{np;} > 0 for all n is not guaranteed anymore. We can approximate
np; with nf(z;)/k since p; ~ f(z;)/k + O(k™3), and

Var (vnp;) ~ (k2h) ™! f(z; /Kt )2dz = O ((k*h)71).
We can approximate Var (y/np;) similarly as

Var (vip;) ~ :’) (1— %) =0 (k).
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Now let k. = min(k, k2h), then

Vn(pi — pi) = Vn(E (i) — pi) + Op (k*—-l/z)

because
Vi = VaB () + 0p (1)),
VB = Viapi + 0 (K7/2).

Hence

Vapi — E()) = Vvn(Bi — pi) + Op(k™?), i =1,... k. (2.4)

The equation (2.4) can be expressed with the vectors W,,, X,,, Op(k*'l/ 2) defined
in the proof of Theorem 2.1, as W, = Xn-l-Op(k,.'l/z). Thenn Ef:l{ﬁi_E(ﬁi)}z
is WI'W,,, and

WIW, = XIX, + 20, (k*-l/Z)Txn +0, (k;l/?)T 0y (k. 71/2).
It is easy to see that Op(k*_l/Q)TXn = k Op(k;!) because
Vn(Bi — pi) = Op(k ™),
and Op(k,~Y/2)TO,(k,~/?) is also k O,(k,"). Therefore

WIw, = XTX, + kO,(k, ). (2.5)

By subtracting n(1 — " p?) and dividing o7, from the both sides of the equation
(2.5), we get

WiW, ~n(l—3pf) _ X7Xn—n(l-3p}) + kOp(k.)
O2n B O2n O2n '
The third part of the last equation is op(1) under the condition of k/(ks02,) — 0
as k., — oo. Since

O2n
by Lemma 2.2, we get the result by Slutsky theorem. O
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